Libidibia ferrea loaded in bacterial nanocellulose: evaluation of antimicrobial activity and wound care / Libidibia ferrea loaded in bacterial nanocellulose: evaluation of antimicrobial activity and wound care

Authors

  • Angela F. Jozala Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Julia R. Santos
  • Gabriela R. dos Santos
  • Fabia J. M. Viroel Viroel
  • Thaisa B. Pickler
  • Carolina Alves dos Santos
  • Marcia A. Rebelo
  • Marco V. Chaud
  • Alessandre Hataka
  • Denise Grotto
  • Marli Gerenutti
  • Thaís Naomi Gonçalves Nesiyama

DOI:

https://doi.org/10.34117/bjdv6n2-066

Keywords:

Bacterial Nanocellulose, Libidibia férrea, Wound Healing, Antimicrobial Activity.

Abstract

The effects of Bacterial Nanocellulose (BNC) loaded with Libidibia ferrea (Lf) hydroalcoholic extract were investigated on the healing process of burn in diabetic and non-diabetic animals. In vivo assay was performed with 36 male rats, with streptozotocin-induced diabetes and burns induced by contact. Animals were divided into Nd-BNC (Non-diabetic + Bacterial nanocellulose membranes); Nd-BNC-Lf (Non-diabetic + Bacterial nanocellulose membranes + Libidibia ferrea); D-BNC (Diabetic + Bacterial nanocellulose membranes); D-BNC-Lf (Diabetic + Bacterial nanocellulose membranes + Libidibia ferrea). Wounds were evaluated for 28 days histologically. Lf extract and BNC-Lf extract showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The severe degree of infection, granulation and inflammation observed after 14 days in diabetic rats (exposed or not to Lf extract), disappeared after 21 days. On the 28th day, there was no histological difference among the groups. BNC-Lf extract demonstrated to have antimicrobial activity, however as an wound dressing, both BNC or BNC-Lf extract were effective in the healing of second-degree burn wounds.

References

Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Editora Nova Odessa, 1998.

Ueda H, Tachibana Y, Moriyasu M, Kawanishi K, Alves SM. Aldose reductase inhibitors from the fruits of Caesalpinia ferrea Mart. Phytomedicine 2001; 8: 377–81.

Nozaki H, Hayashi K ichiro, Kido M, Kakumoto K, Ikeda S, Matsuura N, Tani H, Takaoka D, Iinuma M, Akao Y. Pauferrol A, a novel chalcone trimer with a cyclobutane ring from Caesalpinia ferrea mart exhibiting DNA topoisomerase II inhibition and apoptosis-inducing activity. Tetrahedron Lett 2007; 48: 8290–2.

Bacchi, E.M; Sertie JAA. Indentificação cromatográfica e ação farmacológica de extratos de Styrax camporum Pokl e Caesalpinia ferria Martius. Revista de Farmácia e Bioquímica da Universidade de São Paulo, 1991: 137–49.

Storey C, Salem JI. Lay use of amazonian plants for the treatment of tuberculosis. Acta Amaz 1997; 27: 175–82.

Carvalho AA, Menezes IAC, Antoniolli AR, Santos MR V. Effect of the chronic treatment with aqueous extract of Caesalpinia ferrea and Chrysobalanus icaco on the vascular reactivity of diabetic rats. Lat Am J Pharm 2010; 29: 845–8.

Vasconcelos CFB, Maranhão HML, Batista TM, Carneiro EM, Ferreira F, Costa J, Soares LAL, Sá MDC, Souza TP, Wanderley AG. Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. J Ethnopharmacol 2011; 137: 1533–41.

Souza VH, Barbosa APO, Cardoso GC, Marreto RN, Barreto-Filho JAS, Antoniolli AR, Santos MR V. Evaluation of the antidiabetic potential of five medicinal plants in rats. Lat Am J Pharm 2009; 28: 609–12.

Souza AB de, Souza LMS, Carvalho JCT, Maistro EL. No clastogenic activity of Caesalpinia ferrea Mart. (Leguminosae) extract on bone marrow cells of Wistar rats. Genet Mol Biol 2006; 29: 380–3.

Cavalheiro MG, Farias DF, Fernandes GS, Nunes EP, Cavalcanti FS, Vasconcelos IM, Melo VMM, Carvalho AFU. Atividades biológicas e enzimáticas do extrato aquoso de sementes de Caesalpinia ferrea Mart., Leguminosae. Brazilian J Pharmacogn 2009; 19: 586–91.

Wyrepkowski CC, Da Costa DLMG, Sinhorin AP, Vilegas W, De Grandis RA, Resende FA, Varanda EA, Dos Santos LC. Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 2014; 19: 16039–57.

Freitas ACC, Ximenes NCA, Aguiar JS, Nascimento SC, Lins TUL, Magalhães LR, Coelho LCBB, Carneiro-Da-Cunha MG, Gonçalves-Silva T, Correia MTS. Biological activities of Libidibia (Caesalpinia) ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz pod preparations. Evidence-based Complement Altern Med; 2012.

Ataide JA, De Carvalho NM, Rebelo MDA, Chaud MV, Grotto D, Gerenutti M, Rai M, Mazzola PG, Jozala AF. Bacterial nanocellulose loaded with bromelain: Assessment of antimicrobial, antioxidant and physical-chemical properties. Sci Rep 2017; 7: 2–10.

Jozala AF, Pértile RAN, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 2014; 99: 1181–90.

Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M. Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 2006; 22: 1194–9.

Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Brazilian J Pharm Sci 2009; 45: 241–8.

Malheiros PS, Jozala AF, Pessoa-Jr. A, Vila MMDC, Balcão VM, Franco BDGM. Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: Structural and functional stabilization. Food Packag Shelf Life 2018; 17: 25–9.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Plos Biol 2010; 8:1000–412.

National Research Council of the National Academies. Guide for the care and use of laboratory animals. Eighth Edition, The National Academies Press. Washington, D.C. 2011.

Toma A, Makonnen E, Mekonnen Y, Debella A, Adisakwattana S. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med 2015; 15: 1–8.

Volpato GT, Damasceno DC, Rudge MVC, Padovani CR, Calderon IMP. Effect of Bauhinia forficata aqueous extract on the maternal-fetal outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats. J Ethnopharmacol 2008; 116: 131–7.

Dos Santos Tavares Pereira D, Madruga Lima-Ribeiro MH, Santos-Oliveira R, De Lima Bezerra Cavalcanti C, Teles De Pontes-Filho N, Cassandra Breitenbach Barroso Coelho L, Dos Anjos Carneiro-Leão AM, Dos Santos Correia MT. Topical application effect of the isolectin hydrogel (Cramoll 1,4) on second-degree burns: Experimental model. J Biomed Biotechnol 2012. DOI 10.1155/2012/184538

Ghasemi Pirbalouti A, Azizi S, Koohpayeh A. Healing potential of iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Brazilian J Pharmacogn 2012; 22: 397–403.

De Campos EP, Trombini LN, Rodrigues R, Portella DL, Werner AC, Ferraz MC, De Oliveira RVMH, Cogo JC, Oshima-Franco Y, Aranha N, Gerenutti M. Healing activity of Casearia sylvestris Sw. in second-degree scald burns in rodents. BMC Res Notes 2015; 8: 1–8.

De Souza CF, Lucyszyn N, Ferraz FA, Sierakowski MR. Oxidation and N-alkylation at the C-6 position of galactomannan extracted from Caesalpinia ferrea var. Ferrea seeds. Macromol Symp 2011; 299–300: 66–73.

Gallão MI, Normando L de O, Vieira ÍGP, Mendes FNP, Ricardo NMPS, de Brito ES. Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Ind Crops Prod 2013; 47: 58–62.

Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: A review. Biomaterials 1996; 17: 1553–61.

Peppas NA, Buri PA. Surface, interfacial on soft tissues. J Control Release 1985; 2: 257–75.

Duch?ne D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm 1988; 14: 283–318.

Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 2017; 163: 301–16.

Oliveira GP, Souza TP, Caetano SK, Farias KS, Venancio GN, Bandeira MFCL, Conde NCO. Antimicrobial activity in vitro of extracts of the stem bark and fruit of Libidibia ferrea L. against microorganisms of the oral cavity. Rev Fitos 2013; 8: 95–102

Pavan FR, Sato DN, Higuchi CT, Santos ACB, Vilegas W, Leite CQF. In vitro anti-Mycobacterium tuberculosis activity of some Brazilian Cerrado plants. Brazilian J Pharmacogn 2009; 19: 204–6.

Sampaio FC, Pereira M do S V., Dias CS, Costa VCO, Conde NCO, Buzalaf MAR. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. J Ethnopharmacol 2009; 124: 289–94.

Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol 2013; 31: 295–304

Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011; 32: 3899–909.

Pickler TB, Lopes KP, Magalhaes SA, Kruege CMA, Martins MM, Cechinel Filho V, Jozala AF, Grotto D, Grerenutti M. Effect of Libidibia ferrea bark and seed in maternal reproductive and biochemical outcomes and fetal anomaly in rats. Birth Defects Res A, 2019; 9: 1-9.

Kobayashi YT da S, Almeida VT de, Bandeira T, Alcântara BN de, Silva ASB da, Barbosa WLR, Silva PB da, Monteiro MVB, Almeida MB de. Avaliação fitoquímica e potencial cicatrizante do extrato etanólico dos frutos de Jucá (Libidibia ferrea) em ratos Wistar. Brazilian J Vet Res Anim Sci 2015; 52: 34-40.

Bae J, Jang K, Park S, Jin HK. Promotion of dermal wound healing by polysaccharides isolated from Phellinus gilvus in rats. J Vet Med Sci 2005; 67: 111–4.

Zippel J, Deters A, Hensel A. Arabinogalactans from Mimosa tenuiflora (Willd.) Poiret bark as active principles for wound-healing properties: Specific enhancement of dermal fibroblast activity and minor influence on HaCaT keratinocytes. J Ethnopharmacol 2009; 124: 391–6.

Pereira LDP, Mota MRL, Brizeno LAC, Nogueira FC, Ferreira EGM, Pereira MG, Assreuy AMS. Modulator effect of a polysaccharide-rich extract from Caesalpinia ferrea stem barks in rat cutaneous wound healing: Role of TNF-?, IL-1?, NO, TGF-?. J Ethnopharmacol 2016; 187: 213–23.

Dias AMA, Rey-Rico A, Oliveira RA, Marceneiro S, Alvarez-Lorenzo C, Concheiro A, Júnior RNC, Braga MEM, De Sousa HC. Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids 2013; 74: 34–45.

Downloads

Published

2020-02-07

How to Cite

Jozala, A. F., Santos, J. R., Santos, G. R. dos, Viroel, F. J. M. V., Pickler, T. B., Santos, C. A. dos, Rebelo, M. A., Chaud, M. V., Hataka, A., Grotto, D., Gerenutti, M., & Nesiyama, T. N. G. (2020). Libidibia ferrea loaded in bacterial nanocellulose: evaluation of antimicrobial activity and wound care / Libidibia ferrea loaded in bacterial nanocellulose: evaluation of antimicrobial activity and wound care. Brazilian Journal of Development, 6(2), 6212–6226. https://doi.org/10.34117/bjdv6n2-066

Issue

Section

Original Papers