Compositional optimization for molding of bioactive glasses in the SiO2-Na2O-CaO-P2O5 system/ Otimização da composição para moldagem de vidros bioativos no sistema SiO2-Na2O-CaO-P2O5

Nícolas Lara, Maria Inês Basso Bernardi


This paper shows the determination of the most energy efficient composition for molding of bioglasses in the SiO2 -Na2O-CaO-P2O5 system. Ten compositions were formulated in the range where the glass has a bioactivity index greater than 8 and the curves of viscosity as a function of temperature were drawn using the Vogel-Fulcher-Tammann (VFT) equation. Analyzing the curves, the composition 43SiO2 -30CaO-21Na2O-6P2O5 has the lowest viscosity over the entire working temperature range, requiring less heat to be molded and consequently consuming less energy in the ovens.


bioactive glasses, Vogel-Fulcher-Tammann, vitreous conformation, biomaterials .


ANDERSSON, H.; KARLSSON, K. H.; KANGASNIEMI, K. Calcium phosphate formation at the surface of bioactive glass in vivo. Journal of Non-Crystalline Solids, vol. 119, n. 3, p. 290-296, May 1990.

CONSTANTIAN, M.B. Use of Ear Cartilage in Orbital Floor Reconstruction. Plastic and Reconstructive Surgery, v. 69, n. 6, p. 951-955, Jun. 1982. Ovid Technologies (Wolters Kluwer Health).

ELLIS, E.; TAN, Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh. Journal of Oral and Maxillofacial Surgery, vol. 61, n. 4, p. 442-453, Apr. 2003. .

FLUEGEL, A. Glass viscosity calculation based on a global statistical modeling approach. Glass Technology, v. 48, n. 1, p. 13-30, March. 2007.

HENCH, L. L. The compositional dependence of bioactive glasses and glass-ceramics. Paper presented at the 7th CIMTEC World Ceramic Congress, Montecatini Terme, Italy, 1990.

HENCH, L. L.; WEST, J. K. Biological Applications of Bioactive Glasses, Life Chemistry Reports, Vol. 13, 1996, pp. 187-241.

KAUR, G. Bioactive Glasses, Springer International Publishing. 2017.

KLEIN, M.; GLATZER, C. Individual CAD/CAM Fabricated Glass-Bioceramic Implants in Reconstructive Surgery of the Bony Orbital Floor. Plastic and Reconstructive Surgery, v. 117, no. 2, p. 565-570, Feb. 2006. Ovid Technologies. .

KRISHNAN, V.; LAKSHMI, T. Bioglass : a novel biocompatible innovation . Journal of Advanced Pharmaceutical Technology & Research, vol. 4, n. 2, p. 78-79, 2013. .

MEYER, D.; WLADIS, E. Orbital Fracture. Available at: . Accessed on: Nov. 20, 2020.

RATNER, B. D.; Hoffman A. S.; Schoen, F. J.; LEMMONS, J. E. An Introduction to Materials in Medicine. Biomaterials Science; 1996. p. 484.

RAWLINGS, R. D. Bioactive glasses and glass-ceramics . Clinical Materials, v. 14, n. 2, p. 155-179, Jan. 1993. Elsevier BV.

STOOR, P.; MESIMÄKI, K.; LINDQVIST, C.; KONTIO, R. The use of anatomically drop-shaped bioactive glass S53P4 implants in the reconstruction of orbital floor fractures—A prospective long-term follow-up study. Journal of Cranio-Maxillofacial Surgery, vol. 43, n. 6, p. 969-975, Jul. 2015. .

VARSHNEYA, A. K.; MAURO, J. C. Fundamentals of Inorganic Glasses. 3. ed. Amsterdam: Elsevier, 2019.

VELEZ, J. Ceramic Biomaterials. Available at: Biomaterials ,_ by_Jon_Velez . Accessed on: Nov. 23 2020

VOGEL, H. Das Temperaturebhaengigkeitsgesetz der Viskositaet von Fluessigkeiten. Physikalische Zeitschrift n. 22, p. 645, 1921.

WALLACE, K. E.; HILL, R. G.; PEMBROKE, J. T.; BROWN, C. J.; HATTON, P. V. Influence of Sodium Oxide Content on Bioactive Glass Composite. Journal of Materials Science: Materials in Medicine, vol. 10, n. 12, p. 697-701, 1999. Springer Science and Business Media LLC. .

XYNOS, I. D; HUKKANEN, M. V. J.; BATTEN, J. J.; BUTTERY, L. D.; HENCH, L. L.; POLAK, J. M. Bioglass ®45S5 Stimulates Enhances Bone Osteoblast Formation and Turnover in vitro: implications and applications for bone tissue engineering. Calcified Tissue International, v. 67, no. 4, p. 321-329, Oct. 2000. Springer Science and



  • There are currently no refbacks.