Draft genome sequence of Bacillus subtilis strain S2794, an isolate useful for microbial control / Projeto de sequência genómica de Bacillus subtilis strain S2794, um isolado útil para o controlo microbiano

Gabriela Rocha, Roberto Togawa, Paulo Queiroz, Priscila Grynberg, Thifany Purcena, Érica Martins, Rose Monnerat

Abstract


The pathogenic microorganisms affecting agriculture and chronic threats to sustainable food production and ecosystem stability worldwide. One of the promising microorganisms for sustainable agriculture is Bacillus subtilis, which has been reported as a growth promoter and as antagonistic to a variety of pathogens in vitro and greenhouse and field studies. This work describes the draft genome sequence of the B. subtilis S2794 which contains several specific singletons including genes showing inhibitory activity against numerous plant fungal pathogens. The selective bioassays indicated that the species has pathogenic potential for insects of the order Lepidoptera, such as H. armigera and C. includens, in addition to the phytopathogen S. sclerotiorum. The S2794 strain was resistant to the antibiotics ampicillin, penicillin, sulfamethoxazole, and polymyxin B.


Keywords


surfactin, fungal plant pathogen, growth and biofilm formation.

References


Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, Vicente AD, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Patholol 132:609–619. doi 10.1007/s10658-011-9905-0.

Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313. doi.org/10.1007/978-81-322-2776-2_21.

Wang T, Liang Y, Wu MB, Chen ZJ, Yang LR (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754. doi.org/10.1016/j.cjche.2014.05.020.

Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT (2021) Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19: 600–614. doi.org/10.1038/s41579-021-00540-9.

Praça LB, Morinaga C, Medeiros PT, Melatti VM, Martins ÉS, Dumas VF, Monnerat RG (2009) Isolamento e caracterização de estirpes de Bacillus thuringiensis coletadas em solos do oeste baiano. Universitas: Ciências da Saúde: 7: 1-18. https://www.cienciasaude.uniceub.br/cienciasaude/article/view/999.

De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W (Eds.) (2009) Bergey’s Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. Springer Science; Business Media, p. 1450.

Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6): e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

Seemann T. Prokka: rapid prokaryotic genome annotation. Vol. 30 no. 14 2014, pages 2068–2069. doi:10.1093/bioinformatics/btu153.

Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc. 2014;2(6): e00927-14. Published 2014 Dec 4. doi:10.1128/genomeA.00927-14.

Monnerat RG, Dias SC, Oliveira-Neto OB, Nobre SD, Silva-Werneck JO, Sá MFG de (2002) Criação massal do bicudo do algodoeiro Anthonomus grandis em laboratório. Comunicado Técnico 46. 4p. Brasília: Embrapa-Cenargen. 4p. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/184630/1/bp029.pdf.

Shmidt FGV, Monnerat RG, Borges M, Carvalho R da S (2001) Metodologia de criação de insetos para avaliação de agentes entomopatogênicos. Circular Técnica 11, 20 p. Brasília: Embrapa Recursos Genéticos e Biotecnologia. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=AGB.xis&method=post&formato=2&cantidad=1&expresion=mfn=208922.

Monnerat RG, Silva SF, Silva-Werneck JO (2001) Catálogo do banco de germoplasma de bactérias do gênero Bacillus. Documentos 60, 65p. Brasília: Embrapa-Cenargen. https://livimagens.sct.embrapa.br/amostras/00050530.pdf.

Silva-Werneck JO, Monnerat R (2002). Metodologias para caracterização de isolados de Bacillus thuringiensis. Circular Técnica 10, 5p. Brasília: Embrapa Recursos Genéticos e Biotecnologia. https://ainfo.cnptia.embrapa.br/digital/bitstream/CENARGEN/23206/1/cot070.pdf.

Montalvão SCL, Castro MTD, Soares CMS, Blum LEB, Monnerat RG (2018) Caenorhabditis elegans as an indicator of toxicity of Bacillus thuringiensis strains to Meloidogyne incognita race 3. Ciên. Rur. 48.

Henderson CF, Tilton EW (1955) Tests with Acaricides against the Brown Wheat Mite12. J of Econ Ent 48: 157–161. doi: 10.1093/jee/48.2.157

Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society 57: 25-IN3. doi: 10.1016/S0007-1536(71)80077-3.

Montalvão SC, de Castro MT, Blum LE, Monnerat RG (2021) Biocontrol of Fusarium oxysporum f. sp. vasinfectum with Bacillus spp strains. J of Agric Science 13:9. doi: 10.5539/jas.v13n9p1.

Reva ON, Vyunitskaya VA, Reznik SR, Kozachko IA, Smirnov VV (1995) Antibiotic susceptibility as a taxonomic characteristic of the genus Bacillus. Int J of Syst and Evol Microb, 45(2): 409-411. doi: 10.1099/00207713-45-2-409

Andrews JM, Wise R (2002) Susceptibility testing of Bacillus species. J of Ant Chemot 49 (6): 1040–1042. doi: 10.1093/jac/dkf063.

Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99: 1897–1910. doi: 10.1007/s00253-014-6195-4.

Vater J (1986) Lipopeptides, an attractive class of microbial surfactant. Colloid Polym. Sci 72: 12–18. https://link.springer.com/chapter/10.1007/BFb0114473.

Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi, S (2012) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J of Invert Pathol 109(2): 183–186. doi: 10.1016/j.jip.2011.10.014

Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. Jo of Colloid and Interf Sciec 283 (2): 358-365. doi: 10.1016/j.jcis.2004.09.036.

Chen Y, Gao X, Chen Y, Qin H, Huang L, Han Q (2014) Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biological Control 78: 67-76. doi: 10.1016/j.biocontrol.2014.07.012.

Ghribi D, Elleuch M, Abdelkefi L, Ellouze-Chaabouni S (2012) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J of Stored Produc Research 48: 68-72. doi: 10.1016/j.jspr.2011.10.002.

Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biolog Control, 49 (3): 277-285. doi: 10.1016/j.biocontrol.2009.02.007.

Cavaglieri L, Orlando JRMI, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156(5-6): 748-754. doi: 10.1016/j.resmic.2005.03.001.

Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134: 307–319. doi: 10.1104/pp.103.028712.

Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168. doi: 10.1038/nrmicro2960.

Erable B, Duteanu NM, Ghangrekar MM, Dumas C, Scott K (2010). Application of electro-active biofilms. Biofouling 26: 57–71. doi: 10.1080/08927010903161281.

Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol 7: 375–381. doi: 10.1038/nrmicro2113.

Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14: 389–397. doi: 10.1038/nrmicro2113.

Smolentseva O, Gusarov I, Gautier L, Shamovsky I, DeFrancesco AS, Losick R, Nudler, E (2017) Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Scientific reports 7(1): 1-16. doi:10.1038/s41598-017-07222-8.

Wang XQ, Zhao DL, Shen LL, Jing CL, Zhang CS (2018) Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. doi: 10.1007/978-981-10-8402-7_9.




DOI: https://doi.org/10.34115/basrv6n3-010

Refbacks

  • There are currently no refbacks.