Ubicación de sistemas fotovoltaicos en la red de distribución de corriente continua en medio voltaje considerando edificaciones inteligentes y estaciones de carga de vehículos eléctricos / Localização de sistemas fotovoltaicos na rede de distribuição de corrente contínua em média tensão considerando edifícios inteligentes e estações de carregamento de veículos elétricos

Authors

  • Edgar Pilatasig
  • Alex Valenzuela

DOI:

https://doi.org/10.34115/basrv6n3-016

Keywords:

algoritmo genético, generación distribuida, mvdc, optimización, red de distribución.

Abstract

El presente artículo se enfoca en la ubicación óptima de Generación Distribuida (GD) del tipo fotovoltaico, en un sistema de distribución de 33 nodos de la IEEE. El emplazamiento de GD se realizó considerando el estudio del sistema mediante análisis de flujos de potencia, obteniendo como resultados los valores de potencia, pérdidas y voltajes en por unidad de los nodos del sistema, siendo así que se tienen nodos críticos, los cuales se encuentran por debajo de un rango tolerable de operación. En este contexto, se contempla la óptima ubicación de generación basada en Algoritmo Genético (AG), el cual realiza la búsqueda de los nodos donde se colocará GD de tipo fotovoltaico considerando restricciones técnicas. La aplicación del algoritmo genético también determina la potencia óptima de los sistemas fotovoltaicos. Finalmente, se realiza la comparación del funcionamiento del sistema cuando opera con y sin generación distribuida. Como resultados se tiene la mejora de los perfiles de voltaje del sistema y disminución de pérdidas en el sistema.

References

W.-M. Lin and H.-C. Chin, “A current index based load balance technique for distribution systems,” pp. 1–5, 1998.

M. A. Kashem and V. Ganapathy, “Three-phase load balancing in distribution systems using index measurement technique,” pp. 1–10, 2001. [Online]. Available: www.elsevier.com/locate/ijepes

A. Aguila, D. Carrion, and L. Ortiz, “Analysis of power losses in the ´ asymmetric construction of electric distribution systems,” pp. 1–5, 2015.

T. Klayklueng, S. Dechanupaprittha, and P. Kongthong, Analysis of Unbalance Plug-in Electric VehicleHome Chargingin PEA Distribution Networkby Stochastic Load Model. IEEE, 2015.

J. Zhang, M. Cui, H. Fang, and Y. He, “Two novel load-balancing platforms using common dc buses,” IEEE Transactions on Sustainable Energy, vol. 9, pp. 1099–1107, 7 2018.

M. Ahmadi, O. Bode, M. Sayed, S. Danish, and P. Mandal, “Electrical power and energy systems optimum coordination of centralized and distributed renewable power generation incorporating battery storage system into the electric distribution network,” Electrical Power and Energy Systems, vol. 125, pp. 1–16, 2021. [Online]. Available: https://doi.org/10.1016/j.ijepes.2020.106458

Q. Qi, C. Long, J. Wu, and J. Yu, “Impacts of a medium voltage direct current link on the performance of electrical distribution networks,” Applied Energy, vol. 230, pp. 175–188, 2018.

J. Hu, P. Joebges, G. C. Pasupuleti, N. R. Averous, and R. W. D. Doncker, “A maximum-output-power-point-tracking-controlled dual-active bridge converter for photovoltaic energy integration into mvdc grids,” IEEE Transactions on Energy Conversion, vol. 34, pp. 170–180, 2019.

M. Islam, A. Omole, A. Islam, and A. Domijan, “Asynchronous interconnection of large-scale photovoltaic plants: Site selection considerations,” International Journal of Sustainable Energy, vol. 33, pp. 273– 283, 2014.

L. A. Zafoschnig, S. Nold, and J. C. Goldschmidt, “The race for lowest costs of electricity production: Techno-economic analysis of silicon, perovskite and tandem solar cells,” IEEE Journal of Photovoltaics, vol. 10, pp. 1632–1641, 11 2020.

S. Xiong and S. C. Tan, “Cascaded high-voltage-gain bidirectional switched-capacitor dc-dc converters for distributed energy resources applications,” IEEE Transactions on Power Electronics, vol. 32, pp. 1220–1231, 2017.

Y. Che, W. Li, X. Li, J. Zhou, S. Li, and X. Xi, “An improved coordinated control strategy for pv system integration with vsc-mvdc technology,” Energies, vol. 10, 2017.

X. Li, M. Zhu, M. Su, J. Ma, Y. Li, and X. Cai, “Input-independent and output-series connected modular dc-dc converter with intermodule power balancing units for mvdc integration of distributed pv,” IEEE Transactions on Power Electronics, vol. 35, pp. 1622–1636, 2020.

R. Li, W. Wang, and M. Xia, “Cooperative planning of active distribution system with renewable energy sources and energy storage systems,” IEEE Access, vol. 6, pp. 5916–5926, 2017.

S. Lopez, J. Josue, G. Torres, E. Marcelo, C. Galarza, and D. Francisco, “Recarga de veh´ıculos electricos mediante una optimizaci ´ on entera mixta ´ con participacion de respuesta de la demanda,” 2020. ´

G. Bathurst, G. Hwang, and L. Tejwani, “Mvdc-the new technology for distribution networks,” IET Seminar Digest, vol. 2015, pp. 1–5, 2015.

N. R. Butler, R. C. Myer, J. E. Petry, S. S. Normand, D. M. Robinson, P. J. Marcel, and W. J. Beckman, “Undersea mvdc power distribution,” pp. 298–301, 2010.

X. Huang, L. Qi, and J. Pan, “A new protection scheme for mmc-based mvdc distribution systems with complete converter fault current handling capability,” IEEE Transactions on Industry Applications, vol. 55, pp. 4515–4523, 2019.

L. L. Qi, A. Antoniazzi, L. Raciti, and D. Leoni, “Design of solid-state circuit breaker-based protection for dc shipboard power systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, pp. 260–268, 2017.

Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex wireless communications: Challenges, solutions, and future research directions,” Proceedings of the IEEE, vol. 104, pp. 1369–1409, 7 2016.

Y. Zhuang, F. Liu, Y. Huang, Z. Liu, S. Pan, X. Zha, and J. Jiang, “A multiport modular dc-dc converter with low-loss series lc power balancing unit for mvdc interface of distributed photovoltaics,” IEEE Transactions on Power Electronics, vol. 36, pp. 7736–7749, 7 2021.

R. B. Mansour, M. A. M. Khan, F. A. Alsulaiman, and R. B. Mansour, “Optimizing the solar pv tilt angle to maximize the power output: A case study for saudi arabia,” IEEE Access, vol. 9, pp. 15 914–15 928, 2021.

J. Driesen and R. Belmans, “Distributed generation : Challenges and possible solutions,” pp. 1–8, 2006.

A. T. Davda and B. R. Parekh, “System impact analysis of renewable distributed generation on an existing radial distribution network,” pp. 128–132, 2012.

S. Seme, N. Lukac, B. ˇ Stumberger, and M. Had ˇ ziselimovi ˇ c, “Power ´ quality experimental analysis of grid-connected photovoltaic systems in urban distribution networks,” Energy, vol. 139, pp. 1261–1266, 11 2017.

Z. Li and L. Ren, “Current-limiting performance of three types of sfcl in shipboard mvdc ips.” Institute of Electrical and Electronics Engineers Inc., 10 2020.

J. Su, T. T. Lie, and R. Zamora, “Integration of electric vehicles in distribution network considering dynamic power imbalance issue,” IEEE Transactions on Industry Applications, vol. 56, pp. 5913–5923, 2020.

R. Madhusudhan and M. Lalit, Load Balancing of Electrical Power Distribution System: An Overview, 2018.

A. Sanchez and D. Carrion, “Modeling of the behavior power flow on transmission lines based on voltage and current synchronopasors,” pp. 1–8, 2018.

A. J. Mills and R. W. Ashton, “Genetic algorithm design of an adaptive, multirate lqr controller for a multi-machine mvdc shipboard electric distribution system with constant power loads,” 2018.

L. F. Grisales-Norena, O. D. Garzon-Rivera, C. A. Ram ˜ ´ırez-Vanegas, O. D. Montoya, and C. A. Ramos-Paja, “Application of the backward/forward sweep method for solving the power flow problem in dc networks with radial structure,” vol. 1448. Institute of Physics Publishing, 3 2020.

Published

2022-05-06

How to Cite

Pilatasig, E., & Valenzuela, A. (2022). Ubicación de sistemas fotovoltaicos en la red de distribución de corriente continua en medio voltaje considerando edificaciones inteligentes y estaciones de carga de vehículos eléctricos / Localização de sistemas fotovoltaicos na rede de distribuição de corrente contínua em média tensão considerando edifícios inteligentes e estações de carregamento de veículos elétricos. Brazilian Applied Science Review, 6(3), 979–1002. https://doi.org/10.34115/basrv6n3-016

Issue

Section

Original articles