Ajuste de la topología de la red eléctrica de distribución basado en restricciones de seguridad usando algoritmo de búsqueda / Ajuste da topologia da rede de distribuição elétrica com base em restrições de segurança usando algoritmo de busca

Juan Rios, Alex Valenzuela


El proyecto se enfoca en el desarrollo de una herramienta para la reconfiguración de las redes eléctricas de distribución considerando restricciones de seguridad cuando existen eventos de salida de servicio en el sistema eléctrico. En este contexto, el proyecto toma en consideración la maximización de la carga tomada por el sistema de distribución luego del cambio de estado de los interruptores de interconexión considerando también la mínima cantidad de operaciones de los interruptores y sujeto a restricciones de voltaje, potencia y radialidad de la red. Se ha considerado para el análisis del algoritmo el sistema de 69 nodos modificado y el sistema de 136 nodos, en donde se ha considerado la salida de servicio de un tramo de la red, y se han obtenido como resultados valores satisfactorios en la recuperación de las cargas fuera de servicio considerando la mejor opción de reconfiguración.


optimización multiobjetivo, metaheurísticas, reconfiguración de redes de distribución, reducción del espacio de búsqueda, carga y distribución, variación de generación.


Y. Zhao, Z. Tu, Y. Xiao, H. He, Z. Liu, and L. Zhang, “Electrical principles of verification of the topological structure of a low‐voltage distribution network based on voltage from an Advanced Metering Infrastructure,” J. Eng., vol. 2019, no. 11, pp. 8218–8224, 2019, doi: 10.1049/joe.2019.0089.

X. Tang, K. N. Hasan, J. V. Milanovic, K. Bailey, and S. J. Stott, “Estimation and Validation of Characteristic Load Profile Through Smart Grid Trials in a Medium Voltage Distribution Network,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1848–1859, 2018, doi: 10.1109/TPWRS.2017.2740563.

J. M. Nahman and D. M. Peri, “Electrical Power and Energy Systems Radial distribution network planning under uncertainty by applying di ff erent reliability cost models,” vol. 117, no. October 2019, 2020, doi: 10.1016/j.ijepes.2019.105655.

P. Zhao and R. Nagamune, “Switching linear parameter-varying control with improved local performance and optimized switching surfaces,” Int. J. Robust Nonlinear Control, vol. 28, no. 10, pp. 3403–3421, 2018, doi: 10.1002/rnc.4088.

B. Li, J. Wei, Y. Liang, and B. Chen, “Optimal Placement of Fault Indicator and Sectionalizing Switch in Distribution Networks,” IEEE Access, vol. 8, pp. 17619–17631, 2020, doi: 10.1109/ACCESS.2020.2968092.

M. Kemal, R. Sanchez, R. Olsen, F. Iov, and H. P. Schwefel, “On the trade-off between timeliness and accuracy for low voltage distribution system grid monitoring utilizing smart meter data,” Int. J. Electr. Power Energy Syst., vol. 121, no. May 2019, p. 106090, 2020, doi: 10.1016/j.ijepes.2020.106090.

T. Ferede, B. Khan, and H. Haes, “Optimal expansion planning of distribution system using grid-based multi-objective harmony search algorithm,” Comput. Electr. Eng., vol. 87, no. August, p. 106823, 2020, doi: 10.1016/j.compeleceng.2020.106823.

P. Singh and R. Tiwari, “Distributed parameter-based voltage stability index for identification of critical lines and voltage stability margin in power system,” Cogent Eng., vol. 5, no. 1, pp. 1–20, 2018, doi: 10.1080/23311916.2018.1515573.

F. Wang and F. Li, “Voltage Stability Online Monitoring and Analysis Method Based on the Fixed-Point Principle,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 38, no. 2, pp. 231–238, 2021, doi: 10.1080/02564602.2019.1711207.

J. Shair, H. Li, J. Hu, and X. Xie, “Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics,” Renew. Sustain. Energy Rev., vol. 145, no. December 2020, p. 16, 2021, doi: 10.1016/j.rser.2021.111111.

J. Haakana, T. Kaipia, J. Lassila, and J. Partanen, “Reserve power arrangements in rural area underground cable networks,” IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 589–597, 2014, doi: 10.1109/TPWRD.2013.2280041.

R. Muthukumar and K. Thanushkodi, “Loss reduction in distribution system with hybrid fuzzy-opposition based differential evolution algorithm,” Aust. J. Electr. Electron. Eng., vol. 11, no. 2, pp. 257–264, 2014, doi: 10.7158/E13-151.2014.11.2.

Y. Pang, D. Yang, X. Wang, and B. Zhou, “Current Sag and Mismatch Based Earth Fault Location for Distribution Network with Renewable Energy Resources,” Electr. Power Components Syst., vol. 48, no. 19–20, pp. 2106–2116, 2021, doi: 10.1080/15325008.2021.1913260.

S.-X. Shi and X.-Z. Dong, “A Self-healing Scheme of Single-phase-to-ground Fault in Smart Power Distribution System,” J. Int. Counc. Electr. Eng., vol. 2, no. 1, pp. 14–19, 2012, doi: 10.5370/jicee.2012.2.1.014.

J. B. V. Subrahmanyam and C. Radhakrishna, “A simple method for feeder reconfiguration of balanced and unbalanced distribution systems for loss minimization,” Electr. Power Components Syst., vol. 38, no. 1, pp. 72–84, 2010, doi: 10.1080/15325000903273270.

A. M. Shaheen, A. M. Elsayed, R. A. El-Sehiemy, and A. Y. Abdelaziz, “Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems,” Appl. Soft Comput., vol. 98, no. xxxx, p. 106867, 2021, doi: 10.1016/j.asoc.2020.106867.

Q. Qi, J. Wu, and C. Long, “Multi-objective operation optimization of an electrical distribution network with soft open point,” Appl. Energy, vol. 208, no. May, pp. 734–744, 2017, doi: 10.1016/j.apenergy.2017.09.075.

E. Azad-Farsani, I. G. Sardou, and S. Abedini, “Distribution Network Reconfiguration based on LMP at DG connected busses using game theory and self-adaptive FWA,” Energy, vol. 215, p. 119146, 2021, doi: 10.1016/j.energy.2020.119146.

A. Mendes, N. Boland, P. Guiney, and C. Riveros, “Switch and tap-changer reconfiguration of distribution networks using evolutionary algorithms,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 85–92, 2013, doi: 10.1109/TPWRS.2012.2194516.

J. Liu, H. Cheng, Y. Tian, and L. Yao, “An Optimal N-1 Secure Operation Mode for Medium-voltage Loop Distribution Networks Considering Load Supply Capability and Security Distance,” Electr. Power Components Syst., vol. 45, no. 13, pp. 1393–1403, 2017, doi: 10.1080/15325008.2017.1336582.

T. Asakura, T. Genji, T. Yura, N. Hayashi, and Y. Fukuyama, “Long-term distribution network expansion planning by network reconfiguration and generation of construction plans,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1196–1204, 2003, doi: 10.1109/TPWRS.2003.811170.

S. Sivanagaraju, N. Visali, V. Sankar, and T. Ramana, “Enhancing voltage stability of radial distribution systems by network reconfiguration,” Electr. Power Components Syst., vol. 33, no. 5, pp. 539–550, 2005, doi: 10.1080/15325000590505046.

I. O. Anthony, G. Mokryani, R. H. A. Zubo, O. A. Ezechukwu, and P. Ivry, “Distribution Network Reconfiguration Considering Security-Constraint and Multi-DG Configurations,” UPEC 2020 - 2020 55th Int. Univ. Power Eng. Conf. Proc., pp. 1–6, 2020, doi: 10.1109/UPEC49904.2020.9209818.

D. S. Javan and H. Rajabi Mashhadi, “Wide-area security assessment based on informative variables of power system,” Int. J. Electr. Power Energy Syst., vol. 129, no. December 2020, p. 12, 2021, doi: 10.1016/j.ijepes.2020.106760.

M. Nick, R. Cherkaoui, and M. Paolone, “Optimal Planning of Distributed Energy Storage Systems in Active Distribution Networks Embedding Grid Reconfiguration,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1577–1590, 2018, doi: 10.1109/TPWRS.2017.2734942.

M. A. Kashem, V. Ganapathy, and G. B. Jasmon, “A novel approach for network reconfiguration based load balancing in distribution networks,” Electr. Mach. Power Syst., vol. 28, no. 5, pp. 415–431, 2000, doi: 10.1080/073135600268225.

J. Liu, Z. Tang, P. P. Zeng, Y. Li, and Q. Wu, “Region based reconfiguration of distribution network: A post-contingency security solution,” Energy Reports, vol. 8, pp. 422–428, 2022, doi: 10.1016/j.egyr.2021.11.049.

S. H. Oh, Y. T. Yoon, and S. W. Kim, “Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach,” Appl. Energy, vol. 280, no. March, p. 115900, 2020, doi: 10.1016/j.apenergy.2020.115900.

J. Xiao, G. Q. Zu, X. X. Gong, and C. S. Wang, “Model and Topological Characteristics of Power Distribution System Security Region,” J. Appl. Math., vol. 2014, 2014, doi: 10.1155/2014/327078.

J. Yu, F. Zhang, and J. Dong, “Distribution network reconfiguration based on minimum cost of power supply,” 1st Int. Conf. Sustain. Power Gener. Supply, SUPERGEN ’09, no. x, pp. 1–4, 2009, doi: 10.1109/SUPERGEN.2009.5348374.

A. Valenzuela, S. Simani, and E. Inga, “Automatic overcurrent protection coordination after distribution network reconfiguration based on peer-to-peer communication,” Energies, vol. 14, no. 11, 2021, doi: 10.3390/en14113253.

S. Teimourzadeh and K. Zare, “Application of binary group search optimization to distribution network reconfiguration,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 461–468, 2014, doi: 10.1016/j.ijepes.2014.04.064.

A. M. Othman, A. A. El-Fergany, and A. Y. Abdelaziz, “Optimal Reconfiguration Comprising Voltage Stability Aspect Using Enhanced Binary Particle Swarm Optimization Algorithm,” Electr. Power Components Syst., vol. 43, no. 14, pp. 1656–1666, 2015, doi: 10.1080/15325008.2015.1041623.

A. Guamán and A. Valenzuela, “Distribution network reconfiguration applied to multiple faulty branches based on spanning tree and genetic algorithms,” Energies, vol. 14, no. 20, 2021, doi: 10.3390/en14206699.

DOI: https://doi.org/10.34115/basrv6n3-029


  • There are currently no refbacks.