Evaluación de la actividad antiinflamatoria, inmunológica y antioxidante de beta-sitosterol en modelos murinos / Evaluation of the anti-inflammatory, immunological and antioxidant activity of beta-sitosterol in murine models

Autores

  • Rogelio Paniagua Pérez
  • Eduardo Madrigal Bujaidar
  • Rosa Isela Álvarez González
  • Carlos Jorge Martínez Canseco
  • Gabriela Flores Mondragón
  • Lidia Cruz Hernández

DOI:

https://doi.org/10.34188/bjaerv5n2-003

Palavras-chave:

Beta-sitosterol, ensayo antiinflamatorio, ratón, rata, antioxidante

Resumo

Antecedentes: el beta-sitosterol (BS) es un compuesto presente en numerosas plantas. Se le han atribuido varias propiedades biomédicas interesantes del BS, incluidas actividades inmunomoduladoras y antiinflamatorias. Por lo tanto, el objetivo de este informe fue evaluar su capacidad antiinflamatoria mediante la aplicación de varias pruebas experimentales en roedores.  Métodos: Para llevar a cabo el objetivo del estudio se aplicaron los siguientes métodos. Dos métodos basados en la reacción pasiva inversa de Arthus: el ensayo de edema de pata de rata y el ensayo de pleuresía de rata, así como dos métodos relacionados con la inflamación aguda inespecífica: el ensayo de edema de oreja de ratón y el ensayo de actividad de mieloperoxidasa de ratón. Resultados: Los resultados obtenidos en todas las pruebas establecieron un importante potencial antiinflamatorio de BS. En la prueba de edema de pata de rata encontramos un efecto inhibidor que va del 50-70%; en el ensayo de pleuresía de rata nuestros hallazgos con respecto al volumen de exudado pleural mostraron una reducción del 46%, así como una cantidad baja de neutrófilos del 20% con respecto al nivel del grupo control. En el ensayo de edema de oreja de ratón encontramos una inhibición inflamatoria media del 75%, y respecto a la actividad mieloproxidasa los resultados mostraron una inhibición dependiente de la dosis inducida por BS. Conclusiones: En el presente estudio determinamos una potente capacidad antiinflamatoria de BS en tipos específicos y no específicos de inflamación aguda en roedores.

Referências

Anyanwu GO, Ur-Rehman N, Onyeneke CE, Rauf K. Medicinal plants of the genus Anthocleista-A review of their ethnobotany, phytochemistry and pharmacology. J Etnopharmacol. 2015;175:648–667. [PubMed] [Google Scholar]

Awad AB, Fink CS. Phytosterols as anticancer dietary components: evidence and mechanism of action. J Nutr. 2000;130:2127–2130. [PubMed] [Google Scholar]

Bailey PJ, Sturm A. Immune complexes and inflammation. A study of the activity of anti-inflammatory drugs in the reverse passive Arthus reaction in the rat. Biochem Pharmacol. 1983;32:475–481. [PubMed] [Google Scholar]

Bouic PJ. Sterols and sterolins: new drugs for the immune system? Drug Discov Today. 2002;7:775–778. [PubMed] [Google Scholar]

Choudhary SP, Trans LS. Phytosterols: perspectives in human nutrition and clinical therapy. Curr Med Chem. 2011;18:4557–4567. [PubMed] [Google Scholar]

Dwevedi A, Sharma K, Sharma YK. Cadamba: A miraculus tree having enormous pharmacological implications. Pharmacogn Rev. 2015;9:107–113. [PMC free article] [PubMed] [Google Scholar]

Farkouh ME, Greenberg JD, Jeger RV, Ramanathan K, Verheugt FW, Chesebro JH, Kishner H, Hochman JS, Lay CL, Ruland S, Mellein B, Matchaba PT, Fuster V, Abramson SB. Cardiovascular outcomes in high risk patients with osteoarthritis treated with ibuprofen, naproxen or lumiracoxib. Ann Rheum Dis. 2007;66:764–770. [PMC free article] [PubMed] [Google Scholar]

Fry DE. Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery continues. Am Surg. 2012;78:1–8. [PubMed] [Google Scholar]

Gaffo A, Saag KG, Curtis JR. Treatment of rheumatoid arthritis. Am J Health Syst Pharm. 2006;63:2451–2465. [PubMed] [Google Scholar]

García-Martínez O, De Luna Bertos E, Ramos-Torrecillas J, Manzano-Moreno FJ, Ruiz C. Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci. 2015;123:72–77. [PubMed] [Google Scholar]

Goldstein JL. Challenges in managing NSAID-associated gastrointestinal tract injury. Digestion. 2004;691(Suppl):25–33. [PubMed] [Google Scholar]

Goldstein JL, Cryer B. Gastrointestinal injury associated with NSAID use: a case study and review of risk factors and preventative strategies. Drug Healthc Patient Saf. 2015;7:31–41. [PMC free article] [PubMed] [Google Scholar]

Gupta MB, Nath R, Shrivastava N, Shanker K, Kishor K, Bhargava KP. Anti-inflammatory and antipyretic activities of beta-sitosterol. Planta Med. 1980;39:157–163. [PubMed] [Google Scholar]

Han NR, Kim HM, Jeong HJ. The ß-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Exp Biol Med. 2014;239:454–464. [PubMed] [Google Scholar]

He C, Li W, Zhang JJ, Qu SS, Li JJ, Wang LY. Determination of ß-sitosterol and total sterols content and antioxidant activity of oil in acai (Euterpe oleracea) Zhongguo Zhong Yao Za Zhi. 2014;39:4620–4624. [PubMed] [Google Scholar]

Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae) Phytochemistry. 2005;66:5–29. [PubMed] [Google Scholar]

Hewing B, Fisher EA. Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis. Expert Opin Drug Discov. 2012;7:207–216. [PMC free article] [PubMed] [Google Scholar]

Huang GJ, Deng JS, Huang SS, Wang SY, Chang YS, Kuo YH. Bioassay guided isolation and identification of anti-inflammatory active compound from the root of Ficus formosana. J Agric Food Chem. 2013;61:11008–11015. [PubMed] [Google Scholar]

Jamkhande PG, Barde SR, Patwekar SL, Tidke PS. Plant profile, phytochemistry and pharmacology of Cordia dichotoma (Indian cherry): a review. Asian Pac J Trop Biomed. 2013;3:1009–1016. [PMC free article] [PubMed] [Google Scholar]

Kalafutova S, Juraskova B, Vlcek J. The impact of combinations of non-steroidal anti-inflammatory drugs and anti-hypertensive agents on blood pressure. Adv Clin Exp Med. 2014;23:993–1000. [PubMed] [Google Scholar]

Ling WH, Jones PJ. Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci. 1995;57:195–206. [PubMed] [Google Scholar]

Liz R, Zanatta L, dos Reis GO, Horst H, Pizzolatti MG, Silva FR, Fröde TS. Acute effect of ß-sitosterol on calcium uptake mediates anti-inflammatory effect in murine activated neutrophils. J Pharm Pharmacol. 2013;65:115–122. [PubMed] [Google Scholar]

Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. Beta-sistosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res. 2010;54:551–558. [PubMed] [Google Scholar]

Mahajan SG, Mehta AA. Suppression of ovalbumin-induced Th2-driven airway inflammation by ß-sitosterol in a guinea pig model of asthma. Eur J Pharmacol. 2011;650:458–464. [PubMed] [Google Scholar]

McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–2219. [PubMed] [Google Scholar]

Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–776. [PubMed] [Google Scholar]

Naressi MA, Ribeiro MA, Bersani-Amado CA, Zamuner ML, Costa WF, Tanaka CM, Sarragiotto MH. Chemical composition, anti-inflammatory, molluscidal and free-radical scavenging activities of the leaves of Ficus radicans ‘Variegata’ (Moraceae) Nat Prod Res. 2012;26:323–330. [PubMed] [Google Scholar]

Perez DA, Vago JP, Athaide RM, Reis AC, Teixeira MM, Sousa LP, Pinho V. Switching off key signaling survival molecules to switch on the resolution of inflammation. Mediators Inflamm. 20142014:829851. [PMC free article] [PubMed] [Google Scholar]

Pflum LR, Graeme ML. The Arthus reaction in rats, a possible test for anti-inflammatory and antirheumatic drugs. Agents Action. 1979;9:184–189. [PubMed] [Google Scholar]

Piscoya J, Rodriguez Z, Bustamante SA, Okuhama NN, Miller MJ, Sandoval M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanism of action of the species Uncaria guianensis. Inflamm Res. 2001;50:442–448. [PubMed] [Google Scholar]

Saeidnia SIA, Gohari AR, Abdollahi M. The story of beta-sitosterol-A review. European J of Med Plants. 2014;4:590–609. [Google Scholar]

Serhan CN, Brain CD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21:225–332. [PMC free article] [PubMed] [Google Scholar]

Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191–1197. [PubMed] [Google Scholar]

Susuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132:345–352. [PubMed] [Google Scholar]

Susuki R, Kohno H, Sugie S, Tanaka T. Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane. Histol Histophathol. 2005;20:483–492. [PubMed] [Google Scholar]

Szalai AJ, Digerness SB, Agrawal A, Kearney JF, Bucy RP, Niwas S, Kilpatrick JM, Babu YS, Volanakis JE. The Arthus reaction in rodents: species-specific requirement of complement. J Inmunol. 2000;164:463–468. [PubMed] [Google Scholar]

Tapiero H, Townsend DM, Tew KD. Phytosterols in the prevention of human pathologies. Biomed Pharmacother. 2003;57:321–325. [PMC free article] [PubMed] [Google Scholar]

Tovey FI. Role of dietary phospholipids and phytosterols in protection against peptic ulceration as shown by experiments on rats. World J Gastroenterol. 2015;21:1377–1384. [PMC free article] [PubMed] [Google Scholar]

Uddin G, Rauf A, Siddiqui BS, Muhammad N, Khan A, Shah SU. Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus. L Phytomedicine. 2014;21:954–959. [PubMed] [Google Scholar]

Wilt TJ, MacDonald R, Ishani A. beta-sitosterol for the treatment of benign prostatic hyperplasia: a systematic review. BJU Int. 1999;83:976–983. [PubMed] [Google Scholar]

Young JM, De Joung LM. Cutaneous models of inflammation for evaluation of topical and systemic pharmacological agents. In: Spector S, Back N, editors. Modern methods in pharmacology. Pharmacological methods in the control of inflammation Alan R Liss. New York: 1989. pp. 215–231. [Google Scholar]

Yuk JE, Woo JS, Yun CY, Lee JS, Kim JH, Song GY, Yang EJ, Hur IK, Kim IS. Effects of lactose-beta-sitosterol and beta-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int Immunopharmacol. 2007;7:1517–1527. [PubMed] [Google Scholar]

Downloads

Publicado

2022-04-01

Como Citar

Pérez, R. P., Bujaidar, E. M., González, R. I. Álvarez, Canseco, C. J. M., Mondragón, G. F., & Hernández, L. C. (2022). Evaluación de la actividad antiinflamatoria, inmunológica y antioxidante de beta-sitosterol en modelos murinos / Evaluation of the anti-inflammatory, immunological and antioxidant activity of beta-sitosterol in murine models. Brazilian Journal of Animal and Environmental Research, 5(2), 1466–1481. https://doi.org/10.34188/bjaerv5n2-003

Edição

Seção

Artigos originais