Application of three erosion prediction models in the center of the Iberian Peninsula: incorporation and evaluation of new parameters with influence on soil losses / Aplicación de tres modelos de predicción de la erosión en el centro de la Península Ibérica: incorporación y evaluación de nuevos parámetros con influencia en las pérdidas de suelo

Diana Arévalo, Ramón Bienes, Marta Ruiz-Colmenero

Resumo


Erosion prediction models are useful tools for assessing the impact of land use practices on soil and water conservation. These models are often used by environmental protection authorities for the establishment of guidelines. This study examines the application of three erosion models of different complexity to predict soil loss in a small basin located in the center of the Iberian Peninsula, under a semi-arid Mediterranean climate. The models applied are: the Universal Soil Loss Equation (USLE), the Revised Universal Soil Loss Equation (RUSLE) and an adaptation of the USLE model, which we have called AUSLE, to include soil characteristics not included in the original model. The average value of erosion at the watershed level obtained by the AUSLE model does not show significant differences with respect to the value obtained with RUSLE 1.06c, while the USLE shows an overestimation with respect to the other two models. The AUSLE model allows obtaining values similar to the more complex model (RUSLE) in a simple way, which makes it interesting for its application in conservation plans.


Palavras-chave


RUSLE, USLE, erosion, soil loss, watershed.

Texto completo:

PDF

Referências


Alex, G., Barrios, R. (2000). Distribución espacial del factor LS (RUSLE) usando procedimientos SIG compatibles con IDRISI. Aplicación en una microcuenca andina. Rev. Forest. Venez. 44(1) p 57-64.

Bagarello, V. and Ferro, V. 2004. Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy). Hydrological Processes, 18(1): 141-157.

Bienes, R.; Pérez, R. y Domínguez, M.A. 2001. Mapa de degradación de los suelos de la Comunidad de Madrid (incluye CD ROM con los mapas digitalizados). Consejería de Medio Ambiente-Comunidad de Madrid.121pp. Madrid

Bodoque, J.M., Pedraza, J., Martín-Duque, J.F., Sanz, M.A., Carrasco, R.M., Díez, A. and Mattera, M. 2001. Evaluación de la degradación específica en la cuenca vertiente al embalse de Puente Alta (Segovia) mediante métodos de estimación directos e indirectos. Cuaternario y Geomorfología, 15(3-4): 21-36.

Carmona G.,P. , Obando-Moncayo, F.H. and Isaza G., J. 2004. Erodibility of an Andisol (Hydric Fulvudands) in the Andean Central Zone of Colombia. ISCO 2004 - 13th International Soil Conservation Organisation Conference – Brisbane, July 2004. Conserving Soil and Water for Society: Sharing Solutions.

Casanova Andrello, A., Guimaraes, M.F., Appoloni, C.R. and do Nascimento Filho, V.F. 2003. Use of Cesium-137 Methodology in the Evaluation of Superficial Erosive Processes. Brazilian Archives of Biology and Technology, 46(3): 307-314.

Chaves, HML 1992. Global sensitivity analysis of the parameters of the Modified Universal Soil Loss Equation (MUSLE). Revista Brasileira de Ciencia do Solo. 15: 3 p. 345-350.

Christine Alewell, Pasquale Borrelli, Katrin Meusburger, Panos Panagos. Using the USLE: Chances, challenges and limitations of soil erosion modelling, International Soil and Water Conservation Research, Volume 7, Issue 3, 2019, Pages 203-225.

Cohen, M.J., Shepherd, K.D. and Walsh, M.G. 2005. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, 124: 235–252.

Croke, J. and Nethery, M. 2006. Modelling runoff and soil erosion in logged forests: Scope and application of some existing models. Catena, 67(1): 35-49.

Elías, F., Ruiz, L. (1977). Agroclimatología de España. Instituto Nacional de Investigaciones Agrarias (Ministerio de Agricultura). 268pp.Madrid.

FAO. (2015). GLADIS—Global Land Degradation Information System.

Foster G.R., Toy, T.J., and Renard K.G. 2003. Comparison of the USLE, RUSLE 1.06c and RUSLE 2.0 for Application to Highly Disturbed Lands. Proceedings of the of the First Interagency Conference on Research in the Watersheds. 154-160.

Fox, D.M. and Bryan, R.B. 1999. The relationship of soil loss by interrill erosion to slope gradient. Catena, 38: 211–222.

Fuentes, E.; Bonilla, C.; Troncoso; J. (2001). Operaciones forestales y concentración de sedimentos en cauces naturals II: Análisis de sensibilidad y comparación con otros modelos. Bosque 22 (2): 25-37.

Gallego, F. J.: Cobo M.D.; Navarrete L J.; Valderrama, J.M.; Jimenez, R. 2002. Determinación de riesgos de erosion en la comarca olivarera de Sierra Mágina (Jaén) mediante técnicas SIG y teledetección. XIV Congreso Internacional de Ingeniería Gráfica. Santander, 2002.

Hammad AA, Lundekvam H, Borresen T. 2005. Adaptation of RUSLE in the eastern part of the Mediterranean region. Environmental Management 34: 829–841.

ICONA-INTECSA (1988) “Agresividad de la lluvia en España. Valores del factor R de la ecuación universal de pérdidas de suelo”. ICONA, M.A.P.A.

Kinnel, P.I.A. 2005. Why Universal Soil Loss Equation and the revised version of it do not predict event erosion well. Hydrological processes 19. 851-854

Kinnell, P.I.A. 2003. Event erosivity factor and errors in erosion predictions by some empirical models. Australian Journal of Soil Research, 41: 991-1003.

Kinnell, P.I.A. 2007. Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the Universal Soil Loss Equation. Hydrological Processes, 21(20): 2681-2689.

Klik, A. & Zartl, A.S. 2001. Comparison of soil erosion simulations using WEPP and RUSLE with field measurements. Proc. Of the International Symposium “Soil Erosion Research for the 21st Cecntury”. Honolulu, Hawii. American Society of Agrcultural Enginieers 350-353

Lane LJ & Nearing MA. 1989. USDA-Water Erosion Prediction Project: Hillslope Profile Model Documentation. NSERL Report No. 2. USDAARS: West Lafayette, I.N.

López-Vicente, M., Navas, A. and Machín, J. 2007. Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology and Earth System Sciences Discussion, 4: 2111-2142.

Majhi, A., Shaw, R., Mallick, K., & Patel, P. P. (2021). Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods. Earth-Science Reviews, 221, 103786.

Manaouch, M., Zouagui, A., & Fenjiro, I. (2021). A review of soil erosion modeling by R/USLE in Morocco: Achievements and limits. In E3S Web of Conferences (Vol. 234, p. 00067). EDP Sciences.

Martínez-Casasnovas, J.A. and Sánchez-Bosch, I. 2000. Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès–Anoia vineyard region (NE Spain). Soil and Tillage Research, 57(1-2): 101-106.

Mati, B.M. and Veihe, A. (2001). Application of the USLE in a savannah environment: comparative experiences from East and West Africa. Singapore. Journal of Tropical Geography, 22 (2), 138-155.

Meinen, B. U., & Robinson, D. T. (2021). Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling & Software, 137, 104962.

Ministerio de Medio Ambiente (MMA) (2000) Libro Blanco del Agua en España. Madrid. 637pp.

Montoya, R.D., Montoya, L.J. y Anaya, J.A. 2005. Evaluación de la producción de sedimentos en la cuenca del río la Miel. Revista Avances en Recursos Hidráulicos, 12(12): 119 – 134.

Morgan, R.P.C.; Quinton,,J.N. & Rickson, R.J., 1992, EUROSEM: a user guide, 5ilsoe Collage, 85pp, United Kingdom.

Morse, R. 2004. Quantitative erosion control on highly erodible lands: a selection of tools based on the revised universal soil loss equation. ISCO 2004 - 13th International Soil Conservation Organisation Conference – Brisbane, July 2004. Conserving Soil and Water for Society: Sharing Solutions. Paper No. 612

Omuto, C.T. and Vargas, R.R. 2009. Combining pedometrics, remote sensing and field observations for assessing soil loss in challenging drylands: a case study of northwestern somalia. Land Degradation and Development, 20: 101–115.

Parveen, R., & Kumar, U. (2012). Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand.

Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99-110.

Renard, K.G. and Freimund, J.R. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1-4): 287-306.

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. and Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning withthe Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703, USDA-ARS: Washington, DC.

Risse, L. M., Nearing, M. A., Laflen, J. M., & Nicks, A. D. (1993). Error assessment in the universal soil loss equation. Soil Science society of America journal, 57(3), 825-833.

Rodríguez, M. F.; Florentino, A.; Gallardo J.; De Antonio, R. (2004). Sistemas de Información Geográfica en la evaluación de la erosión Hídrica en Badajoz- España aplicando la metodología USLE. Agronomía Trop. 54(4): 391-409.

Roldan Soriano, M. and Gómez Sanz, V. 2003. Aplicación de la RUSLE v.1.06 en la evaluación de la pérdida de suelo en la cuenca alta del río Cega. Comparación de factores RUSLE-USLE. Edafología, 10(3): 11-19.

Schaub, D. and V. Prasuhn (1998). A soil erosion map of Switzerland as a planning tool for sustainable land use. In Towards Sustainable Land Use - Furthering Cooperation Between People and Institutions (Blume, H.-P., Eger, H., Fleischhauer, E., Hebel, A., Reij, C. and K.G. Steiner eds.), Advances in GeoEcology 31: 161-168.

Shamshad, A., Azhari, M.N., Isa, M.H., Wan Hussin, W.M.A. and Parida, B.P. 2008. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena, 72: 423–432.

Soil Survey Staff. 2014. Keys to Soil Taxonomy 12th ed. Washington, D.C.: USDA-Natural Resources Conservation Service.

Soriano, M. R., & Sanz, V. G. (2003). Aplicación de la RUSLE v. 1.06 en la evaluación de la pérdida de suelo en la cuenca alta del río cega. Comparación de factores RUSLE-USLE. Edafología, 10(3), 11-19.

Strauss, P. and Klaghofer, E. 2004. Scale considerations for the estimation of soil erosion by water in Austria. In: Parris, K., Agricultural Impacts on Soil Erosion and Soil Biodiversity: Developing Indicators for Policy Analysis. - Proceedings from an OECD Expert Meeting, Rome, Italy, March 2003.

Tiwari, A. K., Risse, L. M., & Nearing, M. A. (2000). Evaluation of WEPP and its comparison with USLE and RUSLE. Transactions of the ASAE, 43(5), 1129.

Toy, T.J., Foster, G.R. 1998. Guidelines for the Use of the RUSLE on Mined Lands, Construction Sites and Reclaimed Lands. Office of Surface Mining. Brodway. 148 pp. y software.

Verstraeten G., K. Van Oost, A. Van Rompaey, J.Poesen and G.Govers (2002). Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 19, 386-394.

Vidal, E., Paz, A. (2003). Relación entre la rugosidad del suelo y la retención de agua en microdepresiones. Control de la Erosión y Degradación del Suelo. R. Bienes y M.J. Marqués (eds.) p. 631-633.

Vidal, E., Taboada, Mº.M (1999). Indices de rugosidad y estimación del alamacenamiento temporal de agua en un terreno de cultivo. Cadernos Lab. Xeolóxico de Laxe, 24: pp. 89-98

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion loss: a guide to conservation planning. U.S. Department Agric. Washington D.C. Handb. No. 537, p. 58.

Wu, G. L., Liu, Y. F., Cui, Z., Liu, Y., Shi, Z. H., Yin, R., & Kardol, P. (2020). Trade‐off between vegetation type, soil erosion control and surface water in global semi‐arid regions: A meta‐analysis. Journal of Applied Ecology, 57(5), 875-885.




DOI: https://doi.org/10.34188/bjaerv5n2-030

Apontamentos

  • Não há apontamentos.