Variações na textura, conteúdo lipídico e fibras musculares de corvinas de três tamanhos comerciais diferentes, capturadas no inverno e no verão / Seasonal variations in texture, fat content and muscle cellularity in meagre, Argyrosomus regius, of three different commercial sizes

Teresa Gama Pereira, Luís Carvalho, Ana Grade, Pedro Pousão-Ferreira, Amparo Gonçalves

Resumo


A corvina é uma espécie com elevado potencial para aquacultura intensiva na região do Mediterrâneo. O consumo de alimento desta espécie é extremamente afetado pela temperatura da água e diminui nos meses de inverno. Neste estudo foi analisada a qualidade de corvinas com três tamanhos diferentes: 800, 1500 e 2500 g, capturadas no inverno e no verão. Os resultados obtidos indicam que a estação do ano afeta as caraterísticas morfométricas, conteúdo lipídico (2.5 para 4.3 % e 3.1 para 4.5 % em corvinas de 1500 e 2500 g, respetivamente, no inverno e no verão) e índice hepatossomático (1.3 para 2.8 % e 1.6 to 2.6 % em corvinas de 1500 e 2500 g, respetivamente, no inverno e no verão). As propriedades texturais do filete não foram afetadas mas foi encontrada uma correlação negativa entre a coesividade e o conteúdo de gordura do filete de corvinas de 1500 g. As fibras musculares também foram avaliadas e não foram encontradas diferenças na área das fibras embora a densidade de fibras tenha sido maior no verão do que no inverno (400 para 598 fibras/mm2 e 287 para 413 fibras/mm2 em corvinas de 1500 e 2500 g, respetivamente, no inverno e no verão). Esta diferença poderá estar associada a um aumento do recrutamento das fibras musculares durante o período de inverno, o que é sugerido pela distribuição das áreas das fibras medidas na corvina de 1500 g. Em conclusão, este estudo mostra que a época da captura da corvina pode afetar os diferentes atributos da qualidade do filete deste peixe.


Palavras-chave


Corvina, fibras musculares, textura e gordura

Texto completo:

PDF

Referências


Aksnes, A., Hjertnes, T. and Opstvedt, J. 1996. Effect of dietary protein level on growth and carcass composition in Atlantic halibut (Hippoglossus hippoglossus L). Aquaculture 145, 225– 233. https://www.sciencedirect.com/science/article/pii/S0044848696013476

Alami-Durante, H., Fauconneau, B., Rouel, M., Escaffre, A. M. and Bergot, P. 1997. Growth and multiplication of white skeletal muscle fibres in carp larvae in relation to growth rate. J. Fish Biol. 50, 1285–1302.

Bjornevik, M., Espe, M., Beattie, C., Nortvedt, R. and Kiessling, A., 2004. Temporal variation in muscle fibre area, gaping, texture, colour and collagen in triploid and diploid Atlantic salmon (Salmo salar L). J. Sci. Food Agric. 84, 530–540.

Bjornsson, B., 1995. The growth pattern and sexual maturation of Atlantic halibut (Hippoglossus hippoglossus L) reared in large tanks for 3 years. Aquaculture 138, 281–290. https://www.sciencedirect.com/science/article/pii/0044848695000313

Costa, S., Afonso, C., Bandarra, N., Gueifão, S., Castanheira, I., Carvalho, M.L., Cardoso, C. and Nunes, M.L. 2013. The emerging farmed fish species meagre (Argyrosomus regius): How culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food and Chemistry and Toxicology 60, 277–285.

Duncan, N.J., Estévez, A., Fernández-Palacios, H., Gairin, I., Hernández-Cruz, C.M., Roo, F.J., Schuchardt, D., Vallés and R., 2013. Aquaculture production of meagre (Argyrosomus regius): hatchery techniques, ongrowing and market. In: Allan, G., Burnell, G. (Eds.), Advances in Aquaculture Hatchery Technology. Woodhead Publishing Limited, Cambridge, UK, 519–541.

Espe, M., Ruohonen, K., Bjornevik, M., Froyland, L., Nortvedt, R. and Kiessling, A., 2004. Interactions between ice storage time, collagen composition, gaping and textural properties in farmed salmon muscle harvested at different times of the year. Aquaculture 240, 489–504.

https://www.sciencedirect.com/science/article/pii/S0044848604002558

Fauconneau, B., Chmaitilly, J., Andre, S., Cardinal, M., Cornet, J., Vallet, J.L., Dumont, J.P. and Laroche, M., 1993. Characteristics of rainbow trout flesh: I. Chemical composition and cellularity of muscle and adipose tissues. Sciences des Aliments 13, 173–187.

Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M. and Barat, J.M. 2012. Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Jounal of Food Engineering 113, 210–216.

Folch, T., Lees, M., and Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497–509.

Forsberg, O.I., 1995. Empirical investigation on growth of post-smolt Atlantic salmon (Salmo salar L.) in land based farms. Evidence of a photoperiodic influence. Aquaculture 133, 235– 248. https://www.sciencedirect.com/science/article/pii/0044848695000292

Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M. and Barat, J.M. 2013. Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science and Emerging Technology 19, 210–217.

Giogios, I., Grigorakis, K. and Kalogeropoulos, N. 2013. Organoleptic and chemical quality of farmed meagre (Argyrosomus regius) as affected by size. Food Chem.141, 3153–3159.

Grigorakis, K., Fountoulaki, E., Vasilaki, A., Mittakos, I. and Nathanailides, C. 2011. Lipid quality and filleting yield of reared meagre (Argyrosomus regius). International J. Food Sci.Techno. 46, 711–716.

Hatae, K., Yoshimatsu, F. and Matsumoto, J.J., 1990. Role of muscle fibres in contributing firmness of cooked fish. J. Food Sci. 55, 693–696.

Haug, T., Huse, I., Kjorsvik, E. and Rabben, H., 1989. Observations on the growth of juvenile Atlantic halibut (Hippoglossus-hippoglossus L.) in captivity. Aquaculture, 80, 79–86.

Haugen, T., Kiessling, A., Olsen, R.E., Rora, M.N., Slinde, E. and Nortvedt, R., 2006. Seasonal variations in muscle growth dynamics and selected quality attributes in Atlantic halibut (Hippoglossus hippoglossus L.) fed dietary lipids containing soybean and/or herring oil under different rearing regimes. Aquaculture, 261, 565-579.

https://www.sciencedirect.com/science/article/pii/S0044848606006417

Hemre, G.-I. and Sandnes, K. 1999. Effect of dietary lipid level on muscle composition in Atlantic salmon, Salmo salar. Aquacult. Nutr., 5, 9–16.

Hernández, M.D., López, M.B., Álvarez, A., Ferrandini, E., García García, B. and Garrido, M.D. 2009. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chemistry 114, 237–245.

Hurling, R., Rodell, J.B. and Hunt, H.D., 1996. Fibre diameter and fish texture. J. Texture Stud. 27, 679–685.

Johnston, I. A., Alderson, R., Sandham, C., Dingwall, A., Mitchell, D. and Selkirk, C. 2000. Muscle fibre density in relation to the colour and textural of smoked atlantic salmon (Salmo salar L.). Aquaculture 189, 335–349.

https://www.sciencedirect.com/science/article/pii/S0044848600003732

Johnston, I.A., Manthri, S., Alderson, R., Smart, A., Campbell, P., Mitchell, D., Whyte, D., Dingwall, A., Nickell, D. Selkirk, C. and Robertson, B., 2002. Effects of dietary protein level on muscle cellularity and flesh quality in Atlantic salmon with particular reference to gaping. Aquaculture 210, 259–283

https://www.sciencedirect.com/science/article/pii/S0044848601008626

Johnston, I.A., Manthri, S., Smart, A., Campbell, P., Nickell, D. and Alderson, R., 2003. Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J. Exp. Biol. 206, 3425–3435.

Johnston, I.A., Manthri, S., Bickerdike, R., Dingwall, A., Luijkx, R., Campbell, P., Nickell, D. and Alderson, R., 2004. Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes. Aquaculture 237, 281–300. https://www.sciencedirect.com/science/article/pii/S0044848604002613

Kiessling, A., Storebakken, T., Asgard, T. and Kiessling, K.H., 1991a Changes in the structure and function of the epaxial muscle of rainbow-trout (Oncorhynchus mykiss) in relation to ration and age.1. Growth dynamics. Aquaculture 93, 335–356.

Kiessling, A., Asgard, T., Storebakken, T., Johansson, L. and Kiessling, K.H., 1991b Changes in the structure and function of the epaxial muscle of rainbow-trout (Oncorhynchus mykiss) in relation to ration and age. 3. Chemical composition. Aquaculture 93, 373–387.

Koumans, J.T.M., Akster, H.A., Booms, G.H.R. and Osse, J.W.M., 1993. Growth of carp (Cyprinus carpio) white axial muscle; hyperplasia and hypertrophy in relation to the myonucleus/sarcoplasm ratio and the occurrence of different subclasses of myogenic cells. . Fish Biol. 43, 69–80.

Mallekh, R., Lagarde´re, J.P., Bégout Anras, M.L. and Lafaye, J.Y., 1998. Variability in appetite of turbot, Scophthalmus maximus under intensive rearing conditions: the role of environmental factors. Aquaculture 165, 123– 138.

Monfort, M. C. 2010. Present market situation and prospects of meagre (Argyrosomus regius), as an emerging species in Mediterranean aquaculture. Studies and reviews Nº 89. General fisheries commission for the Mediterranean, FAO.

Nordgarden, U., Ornsrud, R., Hansen, T., Hemre and G.I., 2003. Seasonal changes in selected muscle quality parameters in Atlantic salmon (Salmo salar L.) reared under natural and continuous light. Aquac. Nutr. 9, 161–168.

Olsson, G.B., Olsen, R.L., Carlehog, M. and Ofstad, R., 2003. Seasonal variations in chemical and sensory characteristics of farmed and wild Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 217, 191–205. https://www.sciencedirect.com/science/article/pii/S0044848602001916

Poli, B.M., Parisi, G., Zampacavallo, G., Iurzan, F.,Mecatti, M., Lupi, P. and Bonelli, A. 2003. Preliminary results on quality and quality changes in reared meagre (Argyrosomus regius): body and fillet traits and freshness changes in refrigerated commercial-size fish. Aquaculture International 11: 301–311, 2003.

Ribeiro, L., Soares, L., Quental-Ferreira, H., Gonçaves, A. and Pousão-Ferreira, P. Portuguese research studies meagre production in earthen ponds. 2013. Global Aquaculture Advocate 16, 38-40.

Saavedra, M., Bandarra, N., Pereira, T., Radelytska, Pousão-Ferreira, P. and Gonçalves, A. 2014. Texture of meagre: what are the differences between wild and farmed fish? Oral communication. World Aquaculture Adelaide, 7-11 June. Austrália.

Saavedra, M., Pereira, T. G., Grade, A., Barbeiro, M., Pousão-Ferreira, P., Quental-Ferreira, H., Nunes, M. L., Bandarra, N. and Gonçalves, A. 2015. Farmed meagre, Argyrosomus regius of three different sizes: what are the differences in flesh quality and muscle cellularity? Int. J. Food Sci Tech, 50, 1311–1316.

Saavedra, M., Pereira, T.G., Carvalho, L. M., Pousão-Ferreira, P., Grade, Ana, Teixeira, B., Quental-Ferreira, H., Mendes, R. Bandarra, N. and Gonçalves, A. 2017. Wild and Farmed Meagre, Argyrosomus regius: A Nutritional, Sensory and Histological Assessment of Quality Differences J. Food Compos Anal. 63, 8-14.

Smith, I.P., Metcalfe, N.B., Huntingford, F.A. and Kadri, S., 1993. Daily and seasonal pattern in the feeding behaviour of Atlantic salmon (Salmo salar L.) in sea cage. Aquaculture 117, 165– 178.

Shearer, K.D., Åsgård T., Andorsdöttir G. and Aas, G.H. 1994. Whole body elemental and proximal composition of Atlantic salmon (Salmo salar) during the life cycle. J. Fish Biol., 44, 785–797.

Sinanoglou, V. J., Proestos, C., Lantzouraki, D. Z., Calokerino, A. C. and Miniadis-Meimaroglou, S. 2014. Lipid evaluation of farmed and wild meagre (Argyrosomus regius). Eur. J. Lipid Sci. Technol. 116, 134–143.

Torres, J.A., Saraiva, J.A., Guerra-Rodríguez, E., Aubourg, S.P. and Vázquez, M. 2014. Effect of combining high-pressure processing and frozen storage on the functional and sensory properties of horse mackerel (Trachurus trachurus). Innovative Food Science and Emerging Technology 21, 2–11.

Weatherley, A.H., Gill, H.S. and Lobo, A.F., 1988. Recruitment and maximal diameter of axial muscle-fibers in teleosts and their relationship to somatic growth and ultimate size. J. Fish Biol. 33, 851–859.




DOI: https://doi.org/10.34188/bjaerv5n2-056

Apontamentos

  • Não há apontamentos.