Bothropic and crotalic venoms: main aspects and derivative products for therapeutic and diagnostic purposes - a brief approach / Venenos botrópicos e crotálicos: principais aspectos e produtos derivados para fins terapêuticos e diagnósticos - uma breve abordagem

Natália Ribeiro Nunes, Rita Carolina Figueiredo Duarte, Leilismara Sousa Nogueira, Maria das Graças Carvalho, Melina de Barros Pinheiro


 Ophidian accidents, mainly by snakes of the Bothrops and Crotalus genera, are an important public health problem, especially in tropical countries due to the high rate of occurrence and lethality, being considered as a neglected disease and with challenging treatment. Thus, more knowledge that can minimize the devastating effects of snakebites is required.  This brief review addressed aspects related to snakebite accidents belonging to the Bothrops and Crotalus genera, with regard to their epidemiology, some biochemical characteristics of the respective venoms and the development of pharmaceutical products from snake venoms for therapeutic and diagnostic purposes.


ophidian accidents, bothrops spp, crotalus spp, snakebite, venoms.

Full Text:



Alexander G, Grothusen J, Zepeda H, Schwartzman RJ. Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon. 1988; 26(10):953-60.

Aloof-Hirsch S, de Vries A, Berger A. The direct lytic factor of cobra venom: purification and chemical characterization. Biochim Biophys Acta. 1968; 154(1):53-60.

Amaral CF, Rezende NA, Pedrosa TM, da Silva OA, Pedroso ER. [Afibrinogenemia secondary to crotalid snake bite (Crotalus durissus terrificus)]. Rev Inst Med Trop Sao Paulo. 1988; 30(4):288-92.

Amaral CFS, Rezende NA, Silva OA, Ribeiro MMF, Magalhães RA, Reis RJ, et al. Insuficiência renal aguda secundária a acidentes ofídicos botrópico e crotálico. Análise de 63 casos. . Revista Instituto de Medicina Tropical de São Paulo. 1986; 28(4):220-7.

Azevedo-Marques MM, Cupo P, Hering SE. Acidentes por animais peçonhentos:serpentes peçonhentas. Simpósio: urgências e emergências dermatológicas e toxicológicas. Ribeirão Preto: Medicina; 2003.

Bancher W, Rosa RR, Furlaneto RS. Estudos sobre a fixaçăo eletiva e quantitativa do veneno de Crotalus durissus terrificus nos tecidos nervoso, renal, hepático e muscular de Mus musculus Linnaeus, 1758. Mem Inst Butantan. 1973; 37:139-48.

Barravieira B, Peraçoli MTS. Soroterapia heteróloga. In: B. B, editor. Venenos Animais: uma visão integrada. Rio de Janeiro: EPUC; 1994.

Barros GA, Pereira AV, Barros LC, Lourenco A, Jr., Calvi SA, Santos LD, et al. In vitro activity of phospholipase A2 and of peptides from Crotalus durissus terrificus venom against amastigote and promastigote forms of Leishmania (L.) infantum chagasi. J Venom Anim Toxins Incl Trop Dis. 2015; 21:48.

Barros LC, Soares AM, Costa FL, Rodrigues VM, Fuly AL, Giglio JR, et al. Biochemical and biological evaluation of gyroxin isolated from Crotalus durissus terrificus venom. J Venom Anim Toxins incl Trop Dis. 2011; 17(1).

Bazaa A, Luis J, Srairi-Abid N, Kallech-Ziri O, Kessentini-Zouari R, Defilles C, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol. 2009; 28(4):188-93.

Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One. 2010; 5(4):e10124.

Bellairs AD, Underwood G. The origin of snakes. Biol Rev Camb Philos Soc. 1951; 26(2):193-237.

Bernardes CP, Menaldo DL, Mamede CC, Zoccal KF, Cintra AC, Faccioli LH, et al. Evaluation of the local inflammatory events induced by BpirMP, a metalloproteinase from Bothrops pirajai venom. Mol Immunol. 2015; 68(2 Pt B):456-64.

Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994; 62(3):325-72.

Bochner R, Struchiner CJ. [Snake bite epidemiology in the last 100 years in Brazil: a review]. Cad Saude Publica. 2003; 19(1):7-16.

Braganca BM, Patel NT, Badrinath PG. Isolation and properties of a cobra venom factor selectively cytotoxic to Yoshida sarcoma cells. Biochim Biophys Acta. 1967; 136(3):508-20.

Ministério da Saúde. [cited 03 April 2020]. Available from:

BRASIL. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Brasília: Ministério da Saúde; 2001.

BRASIL. Fundação Nacional de Saúde. Manual de diagnósticos e tratamento de acidentes por animais peçonhentos. 3rd ed. Brasília: Ministério da Saúde; 2005.

Brazil V. Contribuição ao estudo do veneno ophidico. Rev med S Paulo. 1901; 4.

Britten AHF, Card RT, Mielke CH. Reptilasetime – Useful monitor of progress in disseminated intravascular coagulation. . Abstr XIII Int Congr Haematol; Munich 1970.

Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 2009; 23(1):49-59.

Cardoso DF, Lopes-Ferreira M, Faquim-Mauro EL, Macedo MS, Farsky SH. Role of crotoxin, a phospholipase A2 isolated from Crotalus durissus terrificus snake venom, on inflammatory and immune reactions. Mediators Inflamm. 2001; 10(3):125-33.

Castilhos P, Pereira CG, Silva ALN, Napolitano DR, Oliveira F, Souza MA. Effects of Bothrops moojeni venom on Leishmania amazonensis promastigote forms. Journal of Venomous Animals and Toxins including Tropical Diseases [online]. 2011; 17(2):150-8.

Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY. Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol. 2016; 100(14):6165-81.

Cidade DA, Simao TA, Davila AM, Wagner G, Junqueira-de-Azevedo IL, Ho PL, et al. Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon. 2006; 48(4):437-61.

Corrêa MC, Maria DA, Moura-da-Silva AM, Pizzocaro KF, Ruiz IRG. Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin. Toxicon. 2002; 40(6):739-48.

da Silva Cunha KC, Fuly AL, de Araujo EG. A phospholipase A(2) isolated from Lachesis muta snake venom increases the survival of retinal ganglion cells in vitro. Toxicon. 2011; 57(4):580-5.

Diz Filho EB, Marangoni S, Toyama DO, Fagundes FH, Oliveira SC, Fonseca FV, et al. Enzymatic and structural characterization of new PLA2 isoform isolated from white venom of Crotalus durissus ruruima. Toxicon. 2009; 53(1):104-14.

El-Aziz TMA, Soares AG, Stockand JD. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins. 2019; 11(10).

El Chamy Maluf S, Dal Mas C, Oliveira EB, Melo PM, Carmona AK, Gazarini ML, et al. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides. 2016; 78:11-6.

Fenwick AM, Gutberlet Jr RL, Evans JA, Parkinson CL. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zoological Journal of the Linnean Society. 2009; 156(3):617-40.

Ferreira SH, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia. 1965; 21(6):347-9.

Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008; 275(12):3016-30.

França FOS, Malaque CMS. Acidente botrópico. In: Cardoso JLC, Francisco Franca F, Wen FH, Malaque CMS, Haddad Junior V, editors. Animais peçonhentos do Brasil: biologia, clínica e terapêutica dos acidentes. São Paulo: Sarvier; 2009.

Funk C, Gmur J, Herold R, Straub PW. Reptilase-R--a new reagent in blood coagulation. Br J Haematol. 1971; 21(1):43-52.

Funk C, Gmür J, Herold R, Straub PW. Reptilase®-R—A New Reagent in Blood Coagulation. British Journal of Haematology. 1971; 21(1):43-52.

Gempeler-Messina PM, Volz K, Bühler B, Müller C. Protein C Activators from Snake Venoms and Their Diagnostic Use. Pathophysiology of Haemostasis and Thrombosis. 2001; 31(3-6):266-72.

Glaser HSR. Bactericidal Activity of Crotalus Venom in Vitro. Copeia. 1948; 1948(4):245-7.

Gomez-Betancur I, Gogineni V, Salazar-Ospina A, Leon F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules. 2019; 24(18).

Gutiérrez JM. Comprendiendo los venenos de serpientes: 50 años de investigaciones en América Latina. Revista de Biología Tropical. 2002; 50:377-94.

Gutierrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, et al. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel). 2021; 13(7).

Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000; 82(9-10):841-50.

Gutierrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, et al. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis. 2013; 7(6):e2162.

Hawgood BJ. Doctor Albert Calmette 1863-1933: founder of antivenomous serotherapy and of antituberculous BCG vaccination. Toxicon. 1999; 37(9):1241-58.

Hernandez Cruz A, Garcia-Jimenez S, Zucatelli Mendonca R, Petricevich VL. Pro- and anti-inflammatory cytokines release in mice injected with Crotalus durissus terrificus venom. Mediators Inflamm. 2008; 2008:874962.

Jim J, Sakate M. Biologia das serpentes. In: Barraviera B, editor. Venenos animais: uma visão integrada. São Paulo: Publicações Científicas; 1994.

Johnston CI, Brown SG, O'Leary MA, Currie BJ, Greenberg R, Taylor M, et al. Mulga snake (Pseudechis australis) envenoming: a spectrum of myotoxicity, anticoagulant coagulopathy, haemolysis and the role of early antivenom therapy - Australian Snakebite Project (ASP-19). Clin Toxicol (Phila). 2013; 51(5):417-24.

Jorge MT, Ribeiro LA. Acidentes por serpentes peçonhentas do Brasil. AMB rev Assoc Med Bras. 1990; 36(266-77).

Khunsap S, Pakmanee N, Khow O, Chanhome L, Sitprija V, Suntravat M, et al. Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects. J Venom Res. 2011; 2:42-51.

Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006; 397(3):377-87.

Knudsen C, Jurgensen JA, Fons S, Haack AM, Friis RUW, Dam SH, et al. Snakebite Envenoming Diagnosis and Diagnostics. Front Immunol. 2021; 12:661457.

Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta. 2000; 1477(1-2):146-56.

Melgarejo AR. Serpentes peçonhentas do Brasil. In: Cardoso JLC, Francisco Franca F, Wen FH, Malaque CMS, Haddad Junior V, editors. Animais peçonhentos do Brasil: biologia, clínica e terapêutica dos acidentes. São Paulo: Sarvier; 2009.

Mello LE, Prado-Franceschi J, Giglio JR, Cavalheiro EA. Convulxin does not induce convulsions when injected into the rat dorsal hippocampus. Acta Physiol Pharmacol Latinoam. 1989; 39(4):353-8.

Muller VD, Russo RR, Cintra AC, Sartim MA, Alves-Paiva Rde M, Figueiredo LT, et al. Crotoxin and phospholipases A(2) from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon. 2012; 59(4):507-15.

Nahas L, Kamiguti AS, Barros MA. Thrombin-like and factor X-activator components of Bothrops snake venoms. Thromb Haemost. 1979; 41(2):314-28.

Neves MS, Sousa DRT, Ferreira MPSBC, Frota MZM, Souza JVB, Lozano JLL. Evaluation of antifungal activity of snake venoms from the Amazon forest. Journal of Yeast and Fungal Research. 2015; 6(2):11-6.

Nogueira RMB, Sakate M, Sangiorgio F, Laposy CB, Melero M. Experimental envenomation with Crotalus durissus terrificus venom in dogs treated with antiophidic serum - part I: clinical evaluation, hematology and myelogram. Journal of Venomous Animals and Toxins including Tropical Diseases. 2007; 13:800-10.

Nowak G. The Ecarin Clotting Time, a Universal Method to Quantify Direct Thrombin Inhibitors. Pathophysiology of haemostasis and thrombosis. 2003; 33:173-83.

Oguiura N, Boni-Mitake M, Affonso R, Zhang G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J Antibiot (Tokyo). 2011; 64(4):327-31.

Oguiura N, Boni-Mitake M, Radis-Baptista G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon. 2005; 46(4):363-70.

Oliveira RBd, Ribeiro LA, Jorge MT. Fatores associados à incoagulabilidade sangüínea no envenenamento por serpentes do gênero Bothrops. Revista da Sociedade Brasileira de Medicina Tropical. 2003; 36:657-63.

Ondetti MA, Cushman DW. Inhibitors of angiotensinconverting enzyme. . In: Soffer RL, editor. Biochemical

regulation of blood pressure New York: Wiley; 1981. p. 165-204.

Organization. WH. Guidelines for the management of snake-bites2010.

Paine MJ, Desmond HP, Theakston RD, Crampton JM. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992; 267(32):22869-76.

Pinho FMO, Pereira ID. Ofidismo. AMB rev Assoc Med Bras. 2001; 47:24-9.

Prado-Franceschi J, Brazil OV. Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon. 1981; 19(6):875-87.

Puig J, Vilafranca M, Font A, Closa J, Pumarola M, Mascort J. Acute intrinsic renal failure and blood coagulation disorders after a snakebite in a dog. J Small Anim Pract. 1995; 36(7):333-6.

Puzari U, Mukherjee AK. Recent developments in diagnostic tools and bioanalytical methods for analysis of snake venom: A critical review. Analytica Chimica Acta. 2020; 1137:208-24.

Quintana JC, Chacón AM, Vargas L, Segura C, Gutiérrez JM, Alarcón JC. Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica. 2012; 124(2):126-32.

Ramos OH, Selistre-de-Araujo HS. Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol. 2006; 142(3-4):328-46.

Rangel-Santos A, Lima C, Lopes-Ferreira M, Cardoso DF. Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom. Toxicon. 2004; 44(6):609-16.

Rizzi CT, Carvalho-de-Souza JL, Schiavon E, Cassola AC, Wanke E, Troncone LR. Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon. 2007; 50(4):553-62.

Rojas C, Gonçalves, Almeida-Santos S. Epidemiologia dos acidentes ofídicos na região noroeste do estado de São Paulo, Brasil. Revista Brasileira de Saúde e Produção Animal ISSN 1519 9940. 2007; 8:193-204.

Roodt AR, Dolab JA, Segre L. Fisiopatologia y diagnóstico del ataque por serpientes venenosas: una breve actualización. Rev Med Vet. 1996; 77:64-71.

Ruiz de Torrent RM, Bongiovanni B, Leiva LC, Evangelista de Duffard AM, Rodriguez JP, Acosta de Perez OC, et al. Neurotoxicological effects of a thrombin-like enzyme isolated from Crotalus durissus terrificus venom (preliminary study). Toxicon. 2007; 50(1):144-52.

Sajevic T, Leonardi A, Krizaj I. Haemostatically active proteins in snake venoms. Toxicon. 2011; 57(5):627-45.

Sakate M. Terapêutica das intoxicações. In: Andrade SF, editor. Manual de terapêutica veterinária. 2nd ed. São Paulo: Roca; 2002.

Samy RP, Gopalakrishnakone P, Stiles BG, Girish KS, Swamy SN, Hemshekhar M, et al. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr Med Chem. 2012; 19(36):6150-62.

Schaeffer EL, Gattaz WF. Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. J Neural Transm (Vienna). 2007; 114(3):379-85.

Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006; 1761(11):1246-59.

Silva A, Hlusicka J, Siribaddana N, Waiddyanatha S, Pilapitiya S, Weerawansa P, et al. Time delays in treatment of snakebite patients in rural Sri Lanka and the need for rapid diagnostic tests. PLoS Negl Trop Dis. 2020; 14(11):e0008914.

Silva RJ, Fecchio D, Barraviera B. Antitumor effect of snake venous. J Venom Anim Toxins incl Trop Dis. 1996; 2(2).

Soares MA, Pujatti PB, Fortes-Dias CL, Antonelli L, Santos RG. Crotalus durissus terrificus venom as a source of antitumoral agents. J Venom Anim Toxins incl Trop Dis. 2010; 16(3).

Spadacci-Morena DD, de Tomy SC, Sano-Martins IS, Katz SG. The effect of experimental Bothrops jararaca envenomation on pregnant mice. Toxicon. 2006; 47(2):196-207.

Sunitha K, Hemshekhar M, Thushara RM, Santhosh MS, Sundaram MS, Kemparaju K, et al. Inflammation and oxidative stress in viper bite: an insight within and beyond. Toxicon. 2015; 98:89-97.

Tan N, Fung S, editors. Snake Venom L-Amino Acid Oxidases and Their Potential Biomedical Applications. 2008.

Triplett DA, Stocker KF, Unger GA, Barna LK. The Textarin/Ecarin ratio: a confirmatory test for lupus anticoagulants. Thrombosis and haemostasis. 1993; 70(6):925-31.

Vargas LJ, Quintana JC, Pereañez JA, Núñez V, Sanz L, Calvete J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon. 2013; 64:1-11.

Vaz E. Vital Brazil. . Anais Paulistas de Medicina e Cirurgia. 1950; 60:347-66.

Wen FH, Cardoso JLC, Málaque CMSa, França FOS, Sant´anna SS, Fernandes W, et al. Influência das alterações ambientais na epidemiologia dos acidentes ofídicos e na distribuição geográfica das serpentes de importância médica nos Estados de São Paulo e Paraná, 1988-1997. Informe Epidemiológico do Sus. 2002; 11:45-7.

Zamuner SR, da Cruz-Hofling MA, Corrado AP, Hyslop S, Rodrigues-Simioni L. Comparison of the neurotoxic and myotoxic effects of Brazilian Bothrops venoms and their neutralization by commercial antivenom. Toxicon. 2004; 44(3):259-71.



  • There are currently no refbacks.