Avaliação biomecânica de implantes osseointegráveis curtos hexágono externo e cone morse na maxila posicionados em diferentes níveis ósseos (M.E.F) / Biomechanical avaliation of short external hexagon and cone morse implants in the maxillary positioned at different bone levels (F.E.M)

Carlos José Moreira Tavares, Roberto Franklin Gondim, Viviane Barbosa Aires Leal, Jessica Fonseca Gurgel, Barbara de Fátima Barboza de Freitas, Pedro Lopes Nobre Filho, Osmar Joaquim Sousa Filho, Ricardo Teixeira Texeira Abreu

Abstract


Os implantes osseintegráveis curtos representam uma opção de tratamento previsível e são indicados para situações com pouca disponibilidade óssea vertical. Os esforços matigatórios geram tensões no osso ao redor dos implantes osseointegráveis que podem causar reabsorções ósseas, condição que pode comprometer a terapia com implantes curtos. Este trabalho teve como objetivo avaliar pelo método dos elementos finitos bidimensional a biomecânica de implantes curtos osseointegráveis hexágono externo (HE) e cone morse (CM) na maxila em diferentes níveis ósseos. Utilizando o software Rhinoceros®, foram confeccionados três modelos virtuais simulando a região de primeiro molar superior, sendo M1 com implante curto HE (5 mm x 7 mm), M2 com implante curto CM (5 mm x 6 mm) posicionado a nível ósseo e M3 com implante curto CM (5 mm x 5 mm) 2 mm infraósseo. Através do software Patran®, as malhas e condições de contorno foram geradas. A restrição de movimento foi feita na base da maxila e forças de 100N no sentido axial e oblíquo foram distribuídas sobre toda superfície oclusal. As tensões obtidas foram analisadas pelo critério de von Misses e somente na parte óssea foi utilizado o critério de tração compressão. As tensões no osso na carga oblíqua foram maiores que na carga axial nas três situações. Os modelos com os implantes curtos cone morse distribuíram melhor a tensão no osso em relação ao HE. Na carga axial o implante curto infra ósseo distribuiu melhor a tensão e na carga oblíqua, condição mais próxima da realidade, o implante curto cone morse no nível ósseo distribuiu melhor a tensão. As conclusões foram que os implantes curtos com conexão morse são mais favoráveis ao tecido ósseo e os HE menos favoráveis. E que em situações com pouca disponibilidade óssea vertical os implantes curtos cone morse posicionados no nível ósseo são mais favoráveis ao osso, ao ponto de vista de dissipação de carga e tensão.


Keywords


implante curtos, metodo elementos finito e biomecânica.

References


Akagawa Y, Sato Y, Teixeira ER, Shindoi N, Wadamoto M. A mimic osseointegrated implant model for three-dimensional finite element analysis. Journal of Oral Rehabilitation. 2003;30(1):41-45.

Alkan I, Sertgöz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screw. J. Prosthet. Dent. 2004;91(4):319-325.

Barbier L, Sloten JV, Krzesinski E, Schepers E, Van Der Perre G. Finite element analysis of non-axial verus axial loading of oral implants in the madible of the dog. Journal of oral rehabilitation. 1998;25:847-858.

Bernades Thomé, G;, Sr; Sartori, Im. Uso de Implantes curtos: decisão baseada em Evidências Cientifica. Jornal do IIapeo. 2009:2-4.

Bernardes SR, et al. Photoelastic analysis of stress pattems from different implant- abutment interfaces. Int. J. Oral. Maxillofac. Implants. 2009;24(5):781-789.

Birdi H, Schulte J, Kovacs A, Weed M, Chuang S-K. Crown-to-Implant Ratios of Short-Length Implants. J Oral Implantol. 2010;6:425-33.

Blanes RJ; Bernard JP; Blanes ZM. A 10-year prospective study of ITI dental implants placed in the posterior region. I: Clinical and Radiographic Results. Clin Oral Imp Res. 2007;18:699-706.

Chizolini E, et al. Short implants in oral rehabilitation. Revista Sul-Brasileira de Odontologia. 2011;8(3):2011.

Çiftçi Y, Canaya S. The effect of veneering materials on stress distribution in implant- supported fixed prosthetic restorations. The International Journal of Oral e Maxillofacial Implants. 2000;15(4):571-82.

Coelho PG, et al. In vitro evaluation of the implant abutment connection sealing capability of diferent implant systems. J. Oral. Rehab. 2008;35(12):917-24.

Eraslan O, Aykent F, Yücel MT, Akman S. The finite element analysis of the effect of ferrule height on stress distribution at post-and-core-restored all-ceramic anterior crowns. Clin OraI Invest. 2009;13(2):223-7.

Falcón-Antenucci RM, Pellizzer EP, Carvalho PSP, Silva JVL, Moraes SLD. Evaluation of stress distribution on the implant/crown interface. Rev Cir Traumatol Buco-Maxilo-fac. 2008;8(3):49-56.

Felice P, Cannizzaro G, Checchi V, Marchetti C, Pelegrino G, Censi P, Espósito M. Vertical bone augmentation versus 7mm long implants in posterior atrophic andibles. Results of randomized controlled clinical Trial of up to 4 months after loading. Eur J Oral Implantol. 2009;2(1)7-20.

Finger IM, et al. The evolution of external and internal implant/abutment connections. Pract. Proced. Aesthet. Dent. 2003;15(8):625-32.

Geng J, Tan KBC, Liu G. Application of finite element analysis in implant dentistry: A review of the literature. The Journal of Prosthetic Dentistry. 2001;85(6):585-98.

Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H. Tests protocols for evaluation of spinal implants. Journal of Bone and Joint Surgery. 2006 Apr;88 Suppl 2:S103-9.

Goiato MC, et al. Methods used for assessing stresses in buccomaxillary prostheses: photoelasticity, finite element technique, and extensometry. J. Craniofac. Surg. 2009;20(2):561-564.

Goiato MC, Pesqueira AA, Falcon-Antenucci RM, Dos Santos DM, Haddad MF, Bannwart LC, Moreno A. Stress distribution in implant-supported prosthesis with external and internal implant-abutment connections. Acta Odontol Scand. 2013;71:283-8.

Gross MD. Occlusion in implant dentistry. A review of the literature of prosthetic determinants and current concepts. Aust Dent J. 2008;53:60-68.

Hagi D, et al. A targeted review of study outcomes with short (≤ 7 mm) endosseous dental implants placed in partially edentulous patients. Journal of Periodontology. 2004;75:798-804.

Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribuition: A finite element analysis. J Prosthet Dent. 2004;91(1):20-5.

HolmesDC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol. 1997;23(3):104-11.

Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol. 1998;24(2):80-8.

Iplikçioglu H, Akça K, Cehreli MC, Sahin S. Comparison of non-linear finite element stress analysis with in-vitro strain gauge measurements on a Morse taper implant. Int J Oral Maxillofac Implants. 2003;18(2):258-65.

Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM. Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material. Implant Dent. 2005;14:166-175.

Laney WR. Glossary of Oral and Maxillofacial Implants. International Team for Implantology. 1st Edition. Berlin: Quintessence Publishing; 2007.

Lee JH, Frias V, Le KW, et al. Effect of implant size and shape on implant success rates. A literature review Apud. Missch, C. E. Prótese sobre implantes. Editora Santos; 2006.

Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connection: a short communication. J. Oral. Rehab. 2006;33(1):75-78.

Malchiodi L, Cucchi A, Ghensi P, Consonni D, Nocini PF. Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. Clin Oral Implants Res. 2013;25(2):240-51.

Michalakis KX, et al. The effect of different implant-abutment connections on screw joint stability. J Oral Implantol. 2014;40(20):146-52.

Misch, CE. Short Dental Implants: A Literature Review and Rationale for Use. University School of Dentistry, Department of Periodontology. 2005;24(8):64-68.

Misch, C. E., Perel, M. L., Wang, H. L, et al. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Confererence. 2008;17(1):5-15.

Moraes MCCSB, Moraes EJ, Elias C. Análise de tensões em implantes osseointegrados por elementos finitos: variação da ancoragem e diâmetro dos implantes. Rev Bras Implant. 2001;7(3):21-6.

Moraes SLD. Influência da altura da coroa em implantes osseointegrados. Estudo pelo método dos elementos finitos tridimensionais [tese]. Araçatuba: Universidade Estadual Paulista Júlio de Mesquita Filho; 2011.

Morris H, et al. A new implant designed to maximize contact with trabecular bone: survival to 18 months. Journal of Oral Implantology. 2001;27(4):164-173.

Murat S, Eckert SE, Mark Z, Kai-Nan A. Finite Element Analysis of Effect of Prosthesis Height, Angle of Force Application, and Implant Offset on Supporting Bone. Int J Oral Maxillofac Implants. 2004;19(6):819-25.

Oliveira BRG, Januário A. Biomecânica dos implantes dentários de conexão externa, interna e cone morse [monografia]. Brasília: Escola Brasiliense de Odontologia; 2007.

Pellizzer EP, Carli RI, Falcón-Antenucci RM, Verri FR, Goiato MC, Villa LM. Photoelastic analysis of stress distribution with different implant systems. J Oral Implantol. 2011;40(2):117-122.

Piermatti J, et al. An in vitro analysis of implant screw torque loss with external hex and internal connection implant systems. Implant. Dent. 2006;15(4):427-435.

Rangert BO, Jemt T, Jorneus L. Force and moments on Brånemark Implants. Int J Oral Maxillofac Implants. 1989;4:241-7.

Reina JM, et al. Numerical estimation of bone density and elastic constants distribution in a human mandible. Journal of Biomechanics, Eindhoven. 2007;40(4):828-36.

Rokni S, Todescan R, Watson P, Pharoah M, Adegbembo AO, Deporter D. An assessment of crown-to-root ratios with short sintered porous-surfaced implants supporting prostheses in partially edentulous patients. Int J Oral Maxillofac Implants. 2005;20:69-76.

Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2- year follow-up cohort study. Clin Oral Implants Res. 2010;21:937-43.

Rubo JH, Souza EAC. Métodos computacionais aplicados à bioengenharia: solução de problemas de carregamento em próteses sobre implantes. Rev. FOB. 2001;9(3/4):97-103.

Sahin S, et al. The influence of functional forces on the biomechanics of implant- supported prostheses: a review J. Dent., Kidlington, 2002;30:271-282.

Schulte J, Flores AM, Weed M. Crown to-implant ratios of single tooth implant- supported restorations. J Prosthet Dent. 2007;98(1):1-5.

Schwartz-Dabney CL, Dechow PC. Edentulation alters material properties of cortical bone in the human mandible. Journal of Dental Research, Standford. 2002;81(9);613-617.

Silva G. Racionalização biomecânica para o uso de implantes curtos: uma revisão de literatura. FULL Dentistry in Science; 2010;1(2):117-128.

Sotto-Maior BS, Senna PM, da Silva WJ, Rocha EP, Del Bel Cury AA. Influence of crown-to-implant ratio, retention system, restorative material, and occlusal loading on stress concentrations in single short implants. Int J Oral Maxillofac Implants. 2012;27(3):13-18.

Suansuwan N, Swain MV. Determination of elastic properties of metal alloys and dental porcelains. J Oral Rehabil. 2001;28(2):133-9.

Tawil G, Aboujaoude N, Younan R. Influence of Prosthetic Parameters on the Survival and Complication Rates of Short Implants. Int J Oral Maxillofac Implants. 2006;21:275-282.

Taylor WR, et al. Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, Eindhoven. 2002;35(6):767- 773.

Theoharidou A, et al. Abutmet screw loosening in single-implant restorations: a systematic review. Int. J. Oral. Maxillofac. Implants. 2008;23(4):681-690.

Vieira GF, Agra CM, Arakaki Y, Steagall Júnior W, Ferreira ATM. Anatomia de dentes permanents. São Paulo. Santos; 2007. 121p.

Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: Advances and challenges in dental applications. J Dent. 2008;36(7):463-71.

Watanabe N Stegaroiu R, , Tanaka M, Ejiri S, Nomura S, Miyakawa O. Peri-implant stress analysis in simulation models with or without trabecular bone structure. The International Journal of Prosthodontics. 2006;19(1):40-2.

Weinstein AM, Klawitter JJ, Anand SC, Schuessler R. Stress analysis of porous rooted dental implants Implantologist. 1977;1(2):104-9.




DOI: https://doi.org/10.34119/bjhrv5n3-133

Refbacks

  • There are currently no refbacks.