Characterization and Evaluation of Filmogenic, Polymeric, and Biofilm Suspension Properties of Cassava Starch Base (Manihot esculenta Crantz) Plasticized with Polyols / Caracterização e Avaliação das Propriedades Filmogénicas, Poliméricas e de Suspensão de Biofilme da Base de Amido de Mandioca (Manihot esculenta Crantz) Plastificado com Polióis

Authors

  • José de Arimateia Rodrigues do Rego Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Marcondes Lima da Costa
  • Davi do Socorro Barros Brasil
  • Jorddy Neves Cruz
  • Cristiane Maria Leal Costa
  • Elza Brandão Santana
  • Sarah Vasconcelos Furtado
  • Alessandra Santos Lopes

DOI:

https://doi.org/10.34117/bjdv6n7-626

Keywords:

Biofilmes, amido, polióis, gelatinização, cristalinidade.

Abstract

This study investigated the gelatinization process of polymeric suspensions of cassava starch (Manihot esculenta Crantz) plasticized with glycerol or ethylene glycol and used for biofilm production. Scanning electron microscopy confirmed that the starch, used as raw material for suspensions, consists of granule-forming clods and granular aggregates. Physical parameters such as viscosity, density, and temperature can be evaluated and used to accurately characterize and identify the gelatinization point of the polyol-plasticized starch. Upon reaching the gelatinization point, the suspensions went underwent retrogradation and had a kinetic viscosity of 19 to 23.508 mPa·s for the starch–glycerol suspension and 13.56 to 16.12 mPa·s for the starch–ethylene glycol suspension. However, the density of the suspensions slightly decreased during this process, ranging from 1.01 to 0.98 g/cm3. The starch–glycerol biofilm was more malleable and resistant, while the starch–ethylene glycol biofilm was inflexible and brittle. The use of different polyols facilitated the modification of the solubilization capacity of the biofilms. The starch–glycerol biofilm had a solubility value three times higher than that of the starch–ethylene glycol biofilm.

 

Keywords: Biofilms, starch, polyols, gelatinization, crystallinity.

 

RESUMO

Este estudo investigou o processo de gelatinização de suspensões poliméricas de amido de mandioca (Manihot esculenta Crantz) plastificado com glicerol ou etileno glicol e utilizado na produção de biofilme. A microscopia eletrônica de varredura confirmou que o amido, usado como matéria-prima para suspensões, consiste em torrões formadores de grânulos e agregados granulares. Parâmetros físicos como viscosidade, densidade e temperatura podem ser avaliados e utilizados para caracterizar e identificar com precisão o ponto de gelatinização do amido poliol plastificado. Ao atingir o ponto de gelatinização, as suspensões foram submetidas a retrogradação e tiveram uma viscosidade cinética de 19 a 23,508 mPa · s para a suspensão de amido-glicerol e 13,56 a 16,12 mPa · s para a suspensão de amido-etileno-glicol. No entanto, a densidade das suspensões diminuiu ligeiramente durante esse processo, variando de 1,01 a 0,98 g / cm3. O biofilme de amido-glicerol era mais maleável e resistente, enquanto o biofilme de amido-etileno-glicol era inflexível e quebradiço. O uso de diferentes polióis facilitou a modificação da capacidade de solubilização dos biofilmes. O biofilme de amido-glicerol apresentou um valor de solubilidade três vezes maior que o do biofilme de amido-etileno-glicol.

 

References

Ai, Y., & Jane, J. L. (2015, March 1). Gelatinization and rheological properties of starch. Starch/Staerke, Vol. 67, pp. 213–224. https://doi.org/10.1002/star.201400201

ASTM International. (2000). ASTM D3505-96, Standard Test Method for Density or Relative Density of Pure Liquid Chemicals. https://doi.org/10.1520/D3505-96

ASTM International. (2004). ASTM D7042-04, Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). https://doi.org/10.1520/D7042-04

ASTM International. (2006). ASTM D445-06, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). https://doi.org/10.1520/D0445-06

Baker, A. A., Miles, M. J., & Helbert, W. (2001). Internal structure of the starch granule revealed by AFM. Carbohydrate Research, 330(2), 249–256. https://doi.org/10.1016/S0008-6215(00)00275-5

Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978. https://doi.org/10.1016/j.jfoodeng.2006.07.016

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099

Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303–312. https://doi.org/10.1016/j.jfoodeng.2012.08.005

Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

Chen, Q., Yu, H., Wang, L., Ul Abdin, Z., Chen, Y., Wang, J., … Chen, X. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459–67474. https://doi.org/10.1039/c5ra10849g

Delcour, J. A., Bruneel, C., Derde, L. J., Gomand, S. V., Pareyt, B., Putseys, J. A., … Lamberts, L. (2010). Fate of Starch in Food Processing: From Raw Materials to Final Food Products. Annual Review of Food Science and Technology, 1(1), 87–111. https://doi.org/10.1146/annurev.food.102308.124211

Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66(1), 8–15. https://doi.org/10.1016/j.carbpol.2006.02.016

Fonseca-Florido, H. A., Méndez-Montealvo, G., Velázquez de la Cruz, G., Rodríguez-García, M. E., Bello-Pérez, L. A., Hernández-Hernández, E., & Gómez-Aldapa, C. A. (2019). Physicochemical characteristics of stored gels from starch blends. LWT, 114, 108408. https://doi.org/10.1016/j.lwt.2019.108408

Franco, C. M. L., Wong, K. S., Yoo, S. H., & Jane, J. L. (2002). Structural and functional characteristics of selected soft wheat starches. Cereal Chemistry, 79(2), 243–248. https://doi.org/10.1094/CCHEM.2002.79.2.243

Gillman, M., & Erenler, H. (2009). The genetic diversity and cultural importance of cassava and its contribution to tropical forest sustainability. Journal of Integrative Environmental Sciences, 6(3), 189–200. https://doi.org/10.1080/19438150903090509

Hamad, S. H. (2012). Factors Affecting the Growth of Microorganisms in Food. In Progress in Food Preservation (pp. 405–427). https://doi.org/10.1002/9781119962045.ch20

Horwitz, W., & Association of Official Analytical Chemists. (1970). Official methods of analysis of the Association of Official Analytical Chemists. The Association.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012, August). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology, Vol. 5, pp. 2058–2076. https://doi.org/10.1007/s11947-012-0835-4

Kechichian, V., Ditchfield, C., Veiga-Santos, P., & Tadini, C. C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT - Food Science and Technology, 43(7), 1088–1094. https://doi.org/10.1016/j.lwt.2010.02.014

Laohakunjit, N., & Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch/Staerke, 56(8), 348–356. https://doi.org/10.1002/star.200300249

Luchese, C. L., Spada, J. C., & Tessaro, I. C. (2017). Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619–626. https://doi.org/10.1016/j.indcrop.2017.09.020

Maria Martelli, S., Moore, G., Silva Paes, S., Gandolfo, C., & Laurindo, J. B. (2006). Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT - Food Science and Technology, 39(3), 292–301. https://doi.org/10.1016/j.lwt.2004.12.014

Martelli, S. M., Moore, G. R. P., & Laurindo, J. B. (2006). Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. Journal of Polymers and the Environment, 14(3), 215–222. https://doi.org/10.1007/s10924-006-0017-4

Miladinov, V. D. (2001). Temperatures and ethanol effects on the properties of extruded modified starch. Industrial Crops and Products, 13(1), 21–28. https://doi.org/10.1016/S0926-6690(00)00048-0

Rindlava, Å., Hulleman, S. H. D., & Gatenholma, P. (1997). Formation of starch films with varying crystallinity. Carbohydrate Polymers, 34(1–2), 25–30. https://doi.org/10.1016/S0144-8617(97)00093-3

Rocha Plácido Moore, G., Maria Martelli, S., Gandolfo, C., José do Amaral Sobral, P., & Borges Laurindo, J. (2006). Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids, 20(7), 975–982. https://doi.org/10.1016/j.foodhyd.2005.11.001

Shah, U., Naqash, F., Gani, A., & Masoodi, F. A. (2016). Art and Science behind Modified Starch Edible Films and Coatings: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 568–580. https://doi.org/10.1111/1541-4337.12197

Smith, A. M. (2010). Starch and Starch Granules. In Encyclopedia of Life Sciences. https://doi.org/10.1002/9780470015902.a0001294.pub2

Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2), 346–352. https://doi.org/10.1016/j.lwt.2013.06.017

Sriroth, K., Santisopasri, V., Petchalanuwat, C., Kurotjanawong, K., Piyachomkwan, K., & Oates, C. G. (1999). Cassava starch granule structure-function properties: Influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, 38(2), 161–170. https://doi.org/10.1016/S0144-8617(98)00117-9

The future of plastic. (2018, June). Nature Communications, Vol. 9, p. 2157. https://doi.org/10.1038/s41467-018-04565-2

van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems: theoretical aspects. In Water Activity: Influences on Food Quality (pp. 1–61). https://doi.org/10.1016/b978-0-12-591350-8.50007-3

Zavareze, E. da R., Halal, S. L. M. El, Marques e Silva, R., Dias, A. R. G., & Prentice-Hernández, C. (2014). Mechanical, barrier and morphological properties of biodegradable films based on muscle and waste proteins from the whitemouth croaker (Micropogonias Furnieri). Journal of Food Processing and Preservation, 38(4), 1973–1981. https://doi.org/10.1111/jfpp.12173

Zhang, Y., Zhang, Y., Li, B., Xu, F., Zhu, K., Tan, L., … Li, S. (2019). Retrogradation behavior of amylopectin extracted different jackfruit cultivars seeds in presence on the same amylose. LWT, 114, 108366. https://doi.org/10.1016/j.lwt.2019.108366

?

Downloads

Published

2020-07-23

How to Cite

do Rego, J. de A. R., da Costa, M. L., Brasil, D. do S. B., Cruz, J. N., Costa, C. M. L., Santana, E. B., Furtado, S. V., & Lopes, A. S. (2020). Characterization and Evaluation of Filmogenic, Polymeric, and Biofilm Suspension Properties of Cassava Starch Base (Manihot esculenta Crantz) Plasticized with Polyols / Caracterização e Avaliação das Propriedades Filmogénicas, Poliméricas e de Suspensão de Biofilme da Base de Amido de Mandioca (Manihot esculenta Crantz) Plastificado com Polióis. Brazilian Journal of Development, 6(7), 50417–50442. https://doi.org/10.34117/bjdv6n7-626

Issue

Section

Original Papers