Morus nigra: novo biocatalisador para obtenção de compostos de interesse industrial/Morus nigra: new biocatalyst for obtaining compounds of industrial interest

Authors

  • Rogério Aparecido Minini dos Santos
  • Gabrielli Furlan

DOI:

https://doi.org/10.34117/bjdv6n7-837

Keywords:

biocatálise, ( )-carvona, compostos quirais.

Abstract

A síntese de compostos enantiomericamente puros é cada vez mais requisitada pelas indústrias farmacêutica, cosmética e agroalimentar, bem como está estabelecido a importância da quiralidade na atividade e propriedades biológicas de muitos compostos. Desta forma a biocatálise tornou-se uma alternativa viável na produção de compostos de interesse indústria. Assim o objetivo do presente estudo é avaliar as capacidades de biotransformação das folhas Morus nigra do terpenoide (+)-carvona, bem como determinar as condições biocatalíticas ideiais. Foram testadas as variáveis biomassa, concentração de substrato e pH do meio, sendo possível inferir que para todas as condições testadas as folhas de Morus nigra foram capazes de realizar hidrogenação do alceno ativado, bem como a redução da carbonila para álcool quiral. Estes resultados demonstram que a Morus nigra é uma potencial ferramenta biocatalítica para a obtenção de compostos de interesse industrial.

References

ADAMS, R. P. Identification of essential oil components by Gas Chromatography/Mass Spectrometry, 4a edição, Illinois: Allued Books, 2012.

AKHTAR, M. T.; MUSTAFA, N. R.; VERPOORTE, R. Hydroxylation and glycosylation of ?9-tetrahydrocannabinol by Catharanthus roseus cell suspension culture. Biocatalysis and Biotransformation, p. 1-8, 2016. DOI: 10.3109/10242422.2016.1151006

BEZBORODOV, A. M.; ZAGUSTINA, N. A. Enzymatic Biocatalysis in Chemical Synthesis of Pharmaceuticals (Review). Applied Biochemistry and Microbiology, v. 52, n. 3, p. 237-249, 2016. DOI: 10.1134/S0003683816030030

BHATIA, S. P.; MCGINTY, D.; LETIZIA, C. S.; API, A. M. Fragrance material review on laevocarveol. Food and Chemical Toxicology, v. 46, p. S88-S90, 2008. DOI: 10.1016/j.fct.2008.06.055

BIROLLI, W. G.; FERREIRA, I. F.; ALVARENGA, N.; SANTOS, D. A.; MATOS, I. L.; COMASSETO, J. V.; PORTO, A. L. M. Biocatalysis and biotransformation in Brazil: An overview. Biotechnology Advances, v. 33, p. 481-510, 2015. DOI: 10.1016/j.biotechadv.2015.02.001

BRUNI, R.; FANTIN, G.; MEDICI, A.; PEDRINIB, P.; SACCHETTIB, G. Plants in organic synthesis: an alternative to Baker’s yeast. Tetrahedron Lett., v. 43, p. 3377-3379, 2002. DOI: 10.1016/S0040-4039(02)00514-2

de CARVALHO, C. C. C. R.; da FONSECA, M. M. R. Carvone: Why and how should one bother to produce this terpene. Food Chemistry, v. 95, p. 413-422, 2006. DOI: 10.1016/j.foodchem.2005.01.003

CHANG, X.; YANG, Z.; ZENG, R.; YANG, G.; YAN, J. Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst. Chinese Journal of Chemical Engineering, v. 18, n. 6, p. 1029-1033, 2010. DOI: 10.1016/S1004-9541(09)60164-6

COLLINS, C. H. Fundamentos de Cromatografia. Campinas: Editora Unicamp, 2014.

CORDELL, G. A.; LEMOS, T. L. G.; MONTE, F. J. Q.; DE MATTOS, M. C. Vegetables as chemical reagents. J Nat Prod, v. 70, p. 478–92, 2007. DOI: 10.1021/np0680634

CHEN, X.; GAO, X.; WU, Q.; ZHU, D. Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of (R)- and (S)-carvone. Tetrahedron: Asymmetry, v. 23, p. 734-738, 2012. DOI: 10.1016/j.tetasy.2012.05.019

DEWICK, P. M. Medicinal natural products: a biosynthetic approach, 3ed, Reino Unido: John Wiley & Sons, 2009.

DONG, Y.; MCCULLOUGH, K. J.; WITTLIN, S.; CHOLLET, J.; VENNERSTROM, J. L. The structure and antimalarial activity of disp.iro-1,2,4,5-tetraoxanes derived from (+)-dihydrocarvone. Bioorganic & Medicinal Chemistry Letters, v. 20, p. 6359-6361, 2010. DOI: 10.1016/j.bmcl.2010.09.113

FONSECA, A. M.; MONTE, F. J. Q.; DE OLIVEIRA, M.; DE MATTOS, M., CORDELL, G.; BRAZ-FILHO, R.; LEMOS, T. L. G. Coconut water (Cocos nucifera L.) - a new biocatalyst system for organic synthesis. J. Mol. Catal. B: Enzym, v. 57, p. 78-82, 2009. DOI: 10.1016/j.molcatb.2008.06.022

GORETTI, M.; BRANDA, E.; TURCHETTI, B.; CRAMAROSSA, M. R.; ONOFRI, A.; FORTI, L.; BUZZINI, P. Response surface methodology as optimization strategy for asymmetric bioreduction of (4S)-(+)-carvone by Cryptococcus gastricus. Bioresource Technology, v. 121, p. 290-297, 2012. DOI: 10.1016/j.biortech.2012.06.070

GORETTI, M.; PONZONI, C.; CASELLI, E.; MARCHEGIANI, E.; CRAMAROSSA, M. R.; TURCHETTI, B.; BUZZINI, P.; FORTI, L. Biotransformation of electron-poor alkenes by yeasts: asymmetric reduction of (4S)-(+)-carvone by yeast enoate reductases. Enzyme and Microbial Technology, v. 45, p. 463–468, 2009. DOI: 10.1016/j.enzmictec.2009.09.004

HANESSIAN, S.; GIROUX, S.; MERNER, B. L. Design and strategy in organic synthesis. 1st ed. Weinheim: Wiley-VCH; 2013.

ITOH, N. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl. Microbiol. Biotechnol., v. 98, p. 3889-3904, 2014. DOI: 10.1007/s00253-014-5619-5

JIANG, C.; BHATTACHARYYA, A.; SHA, C. Enantiospecific total synthesis of (?)-bakkenolide III and formal total synthesis of (?)-bakkenolides B, C, H, L, V, and X. Organic Letters, v. 9, n. 17, p. 3241-3243, 2007. DOI: 10.1021/ol071124k

KRAWCZYK, H.; SLIWINSKI, M.; KEDZIA, J.; WOJCIECHOWSKI, J.; WOLF, W. M. Asymmetric synthesis of enantiomerically pure 7-isopropenyl-4a-methyl-3- methyleneoctahydrochromen-2-ones. Tetrahedron Asymmetry, v. 18, p. 2712-2718, 2007. DOI: 10.1016/j.tetasy.2007.10.039

MACHADO, L. L.; SOUZA, J. S. N.; MATTOS, M. C.; SAKATA, S. K.; CORDELL, G. A.; LEMOS, T. L. G. Bioreduction of aldehydes and ketones using Manihot species. Phytochemistry, v. 67, p. 1637-1643, 2006. DOI: 10.1016/j.phytochem.2006.02.008

MACHII, H.; KOYAMA, A.; YAMANOUCHI, H. FAO Eletronic Conference: Mulberry for animal production, 2000. Disponível em http://www.fao.org/livestock/agap/frg/mulberry

MACZKA, W.; SO?TYSIK, D.; WINSKA, K.; GRABARCZYK, M.; SZUMNY, A. Plant-Mediated Biotransformations of S(+)- and R(–)-Carvones. Appl. Sci., v. 8, 2018. DOI: 10.3390/app8122605

MAMRUTHA, H. M.; MOGILI, T.; JHANSI LAKSHMI, K.; RAMA, N.; KOSMA, D.; KUMAR, M. U.; JENKS, M. A.; NATARAJA, K. N. Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiology and Biochemistry, v. 48, p. 690-696, 2010. DOI: 10.1016/j.plaphy.2010.04.007

MCGEADY, P.; WANSLEY, D. L.; LOGAN, D. A. Carvone and perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth. Journal of Natural Products, v. 65, p. 953-955, 2002. DOI: 10.1021/np010621l.

NI, Y.; XU, J. Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnology Advances, n. 30, p. 1279-1288, 2012. DOI: 10.1016/j.biotechadv.2011.10.007

ROUVILLE, H. J.; VIVES, G.; TUR, E.; CRASSOUS, J.; RAPENNE, G. Synthesis and analytical resolution of chiral pyrazoles derived from (5R)-dihydrocarvone. New J. Chem., v. 33, p. 293-299, 2009. DOI: 10.1039/b812123k

SILVA, V. D.; CARLETTO, J. S.; CARASEKA, E.; STAMBUKB, B. U.; NASCIMENTO, M. G. Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker’s yeast: A Green method for monitoring the conversion based on liquid–liquid–liquid microextraction with polypropylene hollow fiber membranes. Process Biochemistry, v. 48, p. 1159–1165, 2013. DOI: 10.1016/j.procbio.2013.05.010

SOUZA, F. V. M.; ROCHA, M. B.; SOUZA, D. P.; MARÇAL, M. R. (-)-Carvone: Antispasmodic effect and mode of action. Fitoterapia, v. 85, p 20-24, 2013. DOI: 10.1016/j.fitote.2012.10.012

STRYJEWSKA, A.; KIEPURA, K.; LIBROWSKI, T.; LOCHYÑSKI, S. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling. Pharmacological Reports, n. 65, p. 1102-1111, 2013. DOI: 10.1016/S1734-1140(13)71468-3

TUTIN, G. T.; BURGES, N. A.; CHATER, A. O.; EDMONDSON, J. R.; HEYWOOD, V. H.; MOORE, D. M.; VALENTINE, D. H.; WALTERS, S. M.; WEBB, D. A. Morus L. In Flora Europa. Psilotaceae to Platanaceae. vol 1. Australia: Cambrigde University Press, 1996.

VANDENBERGHE, A.; MARKÓ, I. E.; LUCACCIONI, F.; LUTTS, S. Enantioselective hydrolysis of racemic 1-phenylethyl acetate by an enzymatic system from fresh vegetables. Industrial Crops and Products, v. 42, p. 380-385, 2013. DOI: 10.1016/j.indcrop.2012.06.003

WARD, D. E.; RHEE, C. K. Chemoselective reductions with sodium borohydride. Can. J. Chem., v. 67, p. 1206-1211, 1989. DOI: 10.1080/00397918808068259

WINKLER, C. K., TASNÁDI, G., CLAY, D., HALL, M., FABER, K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. Journal of Biotechnology, v. 162, n. 4, p. 381-389, 2012. DOI: 10.1016/j.jbiotec.2012.03.023

ZHANG, C. X.; ZHANG, C. X.; FANG, L. J.; BI, F. Q.; LI, Y. L. An enantioselective formal synthesis of (?)-thujopsene. Chinese Chemical Letters, v. 19, n. 3, p. 256-258, 2008. DOI: 10.1016/j.cclet.2008.01.009

Published

2020-07-30

How to Cite

Santos, R. A. M. dos, & Furlan, G. (2020). Morus nigra: novo biocatalisador para obtenção de compostos de interesse industrial/Morus nigra: new biocatalyst for obtaining compounds of industrial interest. Brazilian Journal of Development, 6(7), 53403–53413. https://doi.org/10.34117/bjdv6n7-837

Issue

Section

Original Papers