Facultative extremophilic bacteria in brazilian agricultural soils / Bactérias extremofílicas facultativas em solos agrícolas brasileiros

Authors

  • Adriana Magali de Freitas Alves Rezende
  • Carlos Hidemi Uesugi
  • Jéssica Maria Israel de Jesus
  • Mônica Lau da Silva Marques

DOI:

https://doi.org/10.34117/bjdv6n8-260

Keywords:

16S rDNA. Isolation. Microbiome. Soil microbiology.

Abstract

 The objective was to study different groups of bacteria that can adapt to extreme conditions of temperature, pH and salinity, as well as to identify bacterial strains from cultivated (CS) and non-cultivated (US) soil samples collected in the city of Brazlândia, Brazil. 38 strains were collected and submitted to growth tests at 45, 55, 65 and 75ºC, pH of 3, 4, 5, 9, 10 and 11 and salinity of 5, 10 and 15% of NaCl. Eleven strains were selected based on their biochemical characterization and identified based on their 16S rDNA sequences. Four groups of bacteria in the CS and US samples were identified and able to grow under the most extreme conditions. Eleven bacterial strains were considered Gram-negative and separated into three groups based on their positive reactions to biochemical characteristics. Based on the glucose oxidation / fermentation test, seven strains belonged to Enterobacter sp. In addition, two strains of Pseudomonas sp. and two strains, which were not economically related to Giesbergeria sp. and Chryseobacterium sp. They were found. This study showed that some bacteria found in agricultural soils in Brazil have the potential to be used to control phytopathogens under extreme environmental conditions.

 

 

References

REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology, 215: 403-410.

Bedendo IP (1995) Ambiente e doença. In: Bergamin Filho A, Kimati H, Amorim L (Eds.) Manual de fitopatologia. 3. ed. São Paulo: Agronômica Ceres, 1995. v. 1, p. 331-341.

Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17: 478-486.

Denner EBM, Mcgenity TJ, Busse HJ, Grant WD, Wanner G, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. International journal of systematic bacteriology, 44: 774-780.

Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Moutain, California. Geochemical Transactions 5: 13-32.

Godfroy A, Postec A, Raven N (2006) Growth of Hyperthermophilic Microorganisms for Physiological and Nutritional Studies. In: Rainey FA, Oren A (Eds.) Extremophiles Methods in Microbiology. London: Academic Press.

Gorlach-Lira K, Coutinho HDM (2007) Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of northeastern Brazil. Brazilian Journal of Microbiology, 38: 135-141.

Grabovich M, Gavrish E, Kuever J, Lysenko AM, Podkopaeva D, Dubinina G (2006) Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int. International Journal of Systematic and Evolutionary Microbiology, 56: 569-576.

Horikoshi, K. 2004 Alkaliphiles. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 80: 166-176.

Hylemon PB, Wells Junior JS, Krieg NR, Jannasch HW (1973) The genus Spirillum: a taxonomic study. International journal of systematic bacteriology, 23: 340-380.

Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2: 191-200.

Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas e Xanthomonas. Phytopathology, 60: 969-976.

Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinformatics 5: 150-163.

Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69: 1875-1883.

Litchfield CD, Sikaroodi M, Gillevet PM (2006) Characteization of Natural Communities of Halophilic Microorganisms. In: Rainey FA, Oren A (Eds.) Extremophiles Methods in Microbiology. London: Academic Press.

Martins SJ, Medeiros FHV, Andrade RC, Nunez AMP, Souza B (2016) Dual role of milk on aphid and powdery mildew control in kale. Scientia Horticulturae, 203: 126-130.

Martins SJ, Medeiros FHV, Souza RM, Vilela LAF (2014) Is the Curtobacterium- wilt biocontrol temperature-dependent? . Acta Scientiarum Agronomy, 36: 409-415.

Martins SM, Medeiros FHV, Lakshmanan V, Bais HP (2017) A benign Bacillus amyloliquefaciens ALB629 promotes drought tolerance in common bean (Phaseolus vulgaris). Plant and Soil.

Martins SM, Medeiros FHV, Souza RM, Faria MF, Cancellier EL, Silveira HRO, Rezende MLV, Guilherme LRG (2015) Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Applied Soil Ecology, 87: 49-55.

Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10: 85-96.

Moreira FMS, Siqueira JO (2006) Microbiologia e Bioquímica do solo. Lavras-MG, UFLA.

Nascimento ARP, Mariano RLR, Gama MAS (2005) Métodos de preservação e crescimento de Xanthomonas campestris pv. viticola em meio de cultura variando temperatura, pH e concentração de NaCl. Fitopatologia Brasileira, 30: 650-654.

Niisawa C, Oka S, Kodama H, Hirai M, Kumagai Y, Mori K, Matsumoto J, Miyamoto H, Miyamoto H (2008) Microbial analysis of a composted product of marine animal resources and isolation of bacteria antagonistics to a plant pathogen from the compost. The Journal of General and Applied Microbiology, 54: 149-158.

Øvreås L, Torsvick V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36: 303-315.

Pereira JC, Neves MCP, Drozdowicz A (1999) Dinâmica das populações bacterianas em solos de cerrados. Pesquisa Agropecuária Brasileira, 34:801-811.

Ramírez ND, Serrano JAR, Sandoval HT (2006) Microorganismos Extremófilos. Actinomicetos Halófilos en México. Revista Mexicana de Ciencias Farmacéuticas, 37: 56-71.

Rosenblueth M, Martínez L, Silva J, Martínez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Systematic and Applied Microbiology, 27: 27-35.

Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148: 1547-1556.

Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Psicrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, Thermoacidophilic Genus and Family comprising Archaea capable of growth around ph 0. Journal of Bacteriology, 177: 7050-7059.

STETTER KO (1999) Extremophiles and their adaptation to hot environments. FEBS Letters, 452: 22-25.

Tomita CK (2002) Manejo da matéria orgânica no controle de Ralstonia solanacearum em tomateiro. M.Sc. Dissertation, Universidade de Brasília, UnB. Brasília, BRA.

Vandamme P, Bernadet JF, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom.rev. International journal of systematic bacteriology 44: 827-831.

Downloads

Published

2020-08-17

How to Cite

Alves Rezende, A. M. de F., Uesugi, C. H., de Jesus, J. M. I., & Silva Marques, M. L. da. (2020). Facultative extremophilic bacteria in brazilian agricultural soils / Bactérias extremofílicas facultativas em solos agrícolas brasileiros. Brazilian Journal of Development, 6(8), 57816–57833. https://doi.org/10.34117/bjdv6n8-260

Issue

Section

Original Papers