Recombinant phages for Spodoptera frugiperda control: new perspectives to tackle an economic problem / Fagos recombinantes para o controle de Spodoptera frugiperda: novas perspectivas para enfrentar um problema econômico

Authors

  • Sarah Braga Rodrigues Nunes Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Sara Teixeira Soares Mota
  • Joyce Ferreira da Costa Guerra
  • Joyce Dorneles Moura
  • Ana Paula Carneiro
  • Mayara Medeiros de Freitas Carvalho
  • Wanderson Geraldo de Lima
  • Thaise Gonçalves de Araújo

DOI:

https://doi.org/10.34117/bjdv6n8-455

Keywords:

Spodoptera frugiperda, peptides, Phage Display, pest control, biotechnology.

Abstract

The Spodoptera frugiperda is an important pest responsible for large productivity losses of maize. Insecticidal proteins from Bacillus thuringiensis have promoted substantial advances for this pest control. However, since the occurrence of resistant insects is challenging this technology, it has become crucial to develop new effective products by using innovative techniques that allow the identification of new molecules. The aim of this study was to select recombinant phages expressing exogenous peptides binders that may act against S. frugiperda. By using Phage Display technology, seven recombinant phages were successfully selected and bound to intestinal proteins. The SfF3 phage demonstrated similarity to the ABC transporter subfamily C2. In in vivo assay, wild-type phage reduced the toxicity of the B. thuringiensis toxin, and SfF3 phage has rescued the mortality of S. frugiperda neonates when used in combination with the toxin. Our innovative study validated the reliability of Phage Display technology as an agribiotechnological approach for pest control, expanding the options to identify new molecules with bioinsecticides activities.

 

 

References

Alford, A.M. and T.P. Kuhar, Fall Armyworm in Vegetable Crops. 2019.

Arias, O., et al., Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. 2019. 75(11): p. 2948-2957.

Sparks, A.N., A review of the biology of the fall armyworm. Florida Entomologist, 1979: p. 82-87.

Day, R., et al., Fall armyworm: impacts and implications for Africa. 2017. 28(5): p. 196-201.

Toepfer, S., et al., Communication, information sharing, and advisory services to raise awareness for fall armyworm detection and area-wide management by farmers. 2019. 126(2): p. 103-106.

Barros, E.M., J.B. Torres, and A.F. Bueno, Oviposition, development, and reproduction of Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) fed on different hosts of economic importance. Neotropical entomology, 2010. 39(6): p. 996-1001.

Storer, N.P., et al., Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. Journal of Invertebrate Pathology, 2012. 110(3): p. 294-300.

Sacchi, V.F., et al., Bacillus thuringiensis toxin inhibits K+?gradient?dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. Febs Letters, 1986. 204(2): p. 213-218.

VAN RIE, J., et al., Specificity of Bacillus thuringiensis??endotoxins: Importance of specific receptors on the brush border membrane of the mid?gut of target insects. European Journal of Biochemistry, 1989. 186(1?2): p. 239-247.

Farias, J.R., et al., Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. 2014. 64: p. 150-158.

Souza, C.S.F., et al., Response of field populations and Cry-resistant strains of fall armyworm to Bt maize hybrids and Bt-based bioinsecticides. Crop Protection, 2019. 120: p. 1-6.

Amaral, F.S.A., et al., Geographical distribution of Vip3Aa20 resistance allele frequencies in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. 2020. 76(1): p. 169-178.

Vassallo, C.N., et al., Monitoring the Evolution of Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) to the Cry1F Protein in Argentina. Journal of Economic Entomology, 2019. 112(4): p. 1838-1844.

Wu, C.-H., et al., Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science, 2016. 23(1): p. 8.

Ladner, R.C., et al., Phage display-derived peptides as therapeutic alternatives to antibodies. Drug discovery today, 2004. 9(12): p. 525-529.

Yu, M., et al., A new ligand of CD105 screened out by phage display technology provides a reliable identification of recurrent or metastasizing pleomorphic adenoma from pleomorphic adenoma. International immunopharmacology, 2018. 65: p. 37-43.

Yun, S., et al., Modification of phage display technique for improved screening of high-affinity binding peptides. Journal of Biotechnology, 2019. 289: p. 88-92.

Koiwa, H., et al., Phage display selection can differentiate insecticidal activity of soybean cystatins. The Plant Journal, 1998. 14(3): p. 371-379.

Ceci, L.R., et al., Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids. The Plant Journal, 2003. 33(3): p. 557-566.

Domínguez-Flores, T., et al., Using phage display technology to obtain Crybodies active against non-target insects. Scientific Reports, 2017. 7(1): p. 14922.

Costa, L.E., et al., Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis. PLoS One, 2014. 9.

Ferreira, B.C., et al., Seleção de peptídeos específicos para anticorpos anti Leptospira interrogans. 2012.

Peres, K.C., et al., Caracterization of caveolin-1 and-2 proteins in cloned and transgenic placenta of cattle. Pesquisa Veterinária Brasileira, 2015. 35(5): p. 477-485.

Frankenhuyzen, K.V., et al., Susceptibility of different instars of the spruce budworm (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki estimated with a droplet-feeding method. Journal of Economic Entomology, 1997. 90(2): p. 560-565.

Hughes, P., N. Van Beek, and H. Wood, A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses in noctuid larvae. Journal of Invertebrate Pathology, 1986. 48(2): p. 187-192.

Li, C., et al., miRNA-Mediated Interactions in and between Plants and Insects. International Journal of Molecular Sciences, 2018. 19(10): p. 3239.

Ren, X.-L., et al., The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells. Journal of economic entomology, 2016. 109(6): p. 2281-2289.

Singtripop, T., et al., Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. Journal of insect physiology, 2007. 53(9): p. 933-939.

Wang, R.L., et al., Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. Insect science, 2017. 24(2): p. 235-247.

Tanaka, S., et al., The ATP?binding cassette transporter subfamily C member 2 in B ombyx mori larvae is a functional receptor for C ry toxins from B acillus thuringiensis. The FEBS journal, 2013. 280(8): p. 1782-1794.

Flagel, L., et al., Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A. 105 insecticidal proteins. Scientific reports, 2018. 8(1): p. 7255.

Asano, T. and M. Ashida, Cuticular pro-phenoloxidase of the silkworm, Bombyx mori purification and demonstration of its transport from hemolymph. Journal of Biological Chemistry, 2001. 276(14): p. 11100-11112.

Merzendorfer, H., Insect chitin synthases: a review. Journal of Comparative Physiology B, 2006. 176(1): p. 1-15.

Lee, Y.S., et al., Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. cell, 2004. 117(1): p. 69-81.

Pistillo, D., et al., The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression1. Journal of molecular biology, 1998. 276(5): p. 877-885.

Landais, I., et al., Annotation pattern of ESTs from Spodoptera frugiperda Sf 9 cells and analysis of the ribosomal protein genes reveal insect-specific features and unexpectedly low codon usage bias. Bioinformatics, 2003. 19(18): p. 2343-2350.

Bodon, G., et al., Charged multivesicular body protein-2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. Journal of Biological Chemistry, 2011: p. jbc. M111. 283671.

Hudson, A.M. and L. Cooley, A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. The Journal of cell biology, 2002. 156(4): p. 677-687.

Moulton, J.K. and B.M. Wiegmann, Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular phylogenetics and evolution, 2004. 31(1): p. 363-378.

Blagden, S.P., et al., Drosophila Larp associates with poly (A)-binding protein and is required for male fertility and syncytial embryo development. Developmental biology, 2009. 334(1): p. 186-197.

Nguyen, K.T., M.P. Holloway, and R.A. Altura, The CRM1 nuclear export protein in normal development and disease. International journal of biochemistry and molecular biology, 2012. 3(2): p. 137.

Xavier, L.P., et al., Trypsin-like activity of membrane-bound midgut proteases from Anticarsia gemmatalis (Lepidoptera: Noctuidae). European Journal of Entomology, 2005. 102(2): p. 147.

Jiang, K., et al., Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis. PLoS pathogens, 2018. 14(10): p. e1007347.

Tabashnik, B.E., T. Brévault, and Y. Carrière, Insect resistance to Bt crops: lessons from the first billion acres. Nature biotechnology, 2013. 31(6): p. 510.

Halcomb, J.L., et al., Survival and Growth of Bollworm and Tobacco Budworm on Nontransgenic and Transgenic Cotton Expressing a CryIA Insecticidal Protein (Lepidoptera: Noctuidae). Environmental Entomology, 1996. 25(2): p. 250-255.

da Silva, C.A., et al. Eficiência de produtos registrados para a cultura do milho no controle de Spodoptera frugiperda. in Embrapa Milho e Sorgo-Artigo em anais de congresso (ALICE). 2014. In: CONGRESSO NACIONAL DE MILHO E SORGO, 30.; SIMPÓSIO SOBRE LEPDÓPTEROS ….

SOUZA, C., et al. Compatibilidade de milho Bt e bioinseticidas à base de Bacillus thuringiensis para o manejo da lagarta-do-cartucho do milho. in Embrapa Milho e Sorgo-Artigo em anais de congresso (ALICE). 2016. In: CONGRESSO NACIONAL DE MILHO E SORGO, 31., 2016, Bento Gonçalves. Milho e ….

Moraes, C.P.d. and L.A. Foerster, Toxicity and residual control of Plutella xylostella L.(Lepidoptera: Plutellidae) with Bacillus thuringiensis Berliner and insecticides. Ciência Rural, 2012. 42(8): p. 1335-1340.

do Amaral, R.O., R.S.S. dos Santos, and R. Lucia, Sucetibilidade de Bonagota salubricola (Meyrick)(Lepidoptera: Tortricidae) a Bacillus thuringiensis var. aizawai+ kurstaki. 2013.

Benicá, P.C.N.T., et al., CONTROLE DA LAGARTA DO MORANGUEIRO PELO BIOINSETICIDA Bacillus thuringiensis. SEAGRO: ANAIS DA SEMANA ACADÊMICA DO CURSO DE AGRONOMIA DO CCAE/UFES, 2017. 1(1).

Bhering, L.L., et al., Alternative methodology for Scott-Knott test. Embrapa Agroenergia-Artigo em periódico indexado (ALICE), 2008.

Vaz, E.R., et al., A Short Peptide That Mimics the Binding Domain of TGF-?1 Presents Potent Anti-Inflammatory Activity. PLOS ONE, 2015. 10(8): p. e0136116.

Zade, H.M., et al., Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids, 2017. 49(8): p. 1293-1308.

Christiansen, A., et al., High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Scientific reports, 2015. 5: p. 12913.

Ngubane, N.A., et al., High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria. PloS one, 2013. 8(11): p. e77844.

Hou, P., et al., Biopanning of polypeptides binding to bovine ephemeral fever virus G 1 protein from phage display peptide library. BMC veterinary research, 2018. 14(1): p. 3.

Wang, J., et al., Screening and identification of RhD antigen mimic epitopes from a phage display random peptide library for the serodiagnosis of haemolytic disease of the foetus and newborn. Blood transfusion= Trasfusione del sangue, 2018: p. 1-7.

Atsumi, S., et al., Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences, 2012. 109(25): p. E1591-E1598.

Xiao, Y., et al., Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Scientific Reports, 2014. 4: p. 6184.

Park, Y., et al., ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biology, 2014. 12(1): p. 46.

Baxter, S.W., et al., Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera. Genetics, 2011. 189(2): p. 675-679.

Bravo, A., S.S. Gill, and M. Soberón, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007. 49(4): p. 423-435.

Heckel, D.G., Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 2012. 104(2): p. 103-110.

Downloads

Published

2020-08-21

How to Cite

Nunes, S. B. R., Mota, S. T. S., Guerra, J. F. da C., Moura, J. D., Carneiro, A. P., Carvalho, M. M. de F., de Lima, W. G., & de Araújo, T. G. (2020). Recombinant phages for Spodoptera frugiperda control: new perspectives to tackle an economic problem / Fagos recombinantes para o controle de Spodoptera frugiperda: novas perspectivas para enfrentar um problema econômico. Brazilian Journal of Development, 6(8), 60452–60472. https://doi.org/10.34117/bjdv6n8-455

Issue

Section

Original Papers