Atividade da superóxido dismutase em modelo de animal com lesão Hipocampal induzida por peptideo A?1-42 e suplementados com melatonina/ Peroxide activity dismutes in animal model with Hypical lesion induced by peptide A?1-42 and supplemented with melatonine

Authors

  • Welton Daniel Nogueira Godinho
  • Isabele Dutra de Aguiar
  • Francisco Sérgio Lopes Vasconcelos Filho
  • Guilherme Nizan Silva Almeida
  • Bruno Felipe da Silva
  • Israel Barbosa de Albuquerque
  • Vânia Marilande Ceccatto
  • Paula Matias Soares

DOI:

https://doi.org/10.34117/bjdv6n10-328

Keywords:

Alzheimer, Demência, Melatonina e Superóxido Dismutase.

Abstract

 A Doença de Alzheimer (DA) caracteriza-se pela neurodegeneração progressiva e irreversível decorrente de lesões moleculares decorrentes do acúmulo de placas neuríticas carregadas de ?-amiloide e emaranhados neurofibrilares causando perda progressiva da memória e das funções cognitivas. Portanto, o objetivo deste estudo foi identificar alterações na atividade da superóxido dismutase no hipocampo de ratos induzidos ao Alzheimer e suplementados via gavagem por melatonina. Os animais foram divididos em cinco grupos (N=12): Grupo 1: Controle (não operado) que receberam veículo por gavagem (CONTROLE-SALINA, CS) , Grupo 2: animais SHAM (Operação de Alzheimer) que receberam a injeção do veículo de diluição de melatonina (SHAM-SALINA,SS), Grupo 3: animais SHAM que receberam melatonina (SHAN-MELATONINA, SM), Grupo 4: animais induzidos ao Alzheimer que receberam somente o veículo (ALZHEIMER- SALINA, AS), Grupo 5: animais induzidos ao Alzheimer que receberam melatonina (ALZHEIMER- MELATONINA, AM) e por meio de testes de equilíbrio redox, analisou-se a atividade da superóxido dismutase (SOD) verificando um aumento na defesa antioxidante, inclusive na suplementação do grupo 3. Conclui-se que a Melatonina pode melhorar as defesas antioxidantes em resposta à Doença de Alzheimer.

References

ALBANESE, E. et al. Dementia severity and weight loss: A comparison across eight cohorts. The 10/66 study. Alzheimer's & Dementia, v. 9, n. 6, p. 649-656, 2013.

BANNISTER, J. V, CALABRESE, L. Assays for superoxide dismutase. Methods Biochem. Anal, 1987.

BEAR, M.F.; CONNORS, B.W.; PARDISO, M.A. Neurociências Desvendando o Sistema Nervoso. 3.ed. Porto Alegre:Artmed, 2008.

BHATTACHARJEE, S. Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: GUPTA, S.D. Reactive oxygen species and antioxidants in higher plants. Enfi eld: Science Publishers, p.1-30, 2010.

CAI, H.-Y. et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid ? protein-induced impairments in rats. Neuroscience, v. 277, p. 6-13, 2014.

J. CIPOLLA-NETO, F. G. AMARAL, S. C. AFECHE2, D. X. TAN, R. J. REITER. Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56:371–381, 2014

DESRUMAUX, C. et al. Increased amyloid-? peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology, v. 38, n. 5, p. 817-825, 2013.

DUMONT, M,WILLE, STACK, N.Y. CALINGASAN, M.F. BEAL, M.T. LinReduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease, Faseb j., n. 23, v. 1, p. 2459-2466, 2009.

ESPAÑA, J. et al. Intraneuronal ?-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer's disease transgenic mice. Biological psychiatry, v. 67, n. 6, p. 513- 521, 2010.

FARGO, K.; BLEILER, L. Alzheimer's Association report. Alzheimers Dement, v. 10, p.47-92, 2014.

FARLOW, M, R. et al. A 24?Week, Randomized, Controlled Trial of Rivastigmine Patch 13.3 mg/24 h Versus 4.6 mg/24 h in Severe Alzheimer's Dementia. CNS neuroscience & therapeutics, v. 19, n. 10, p. 745-752, 2013.

GSELL, W, CONRAD, R, HICKETHIER, M, SOFIC, E, FRÖLICH, L, WICHART, I, JELLINGER, K, MOLL, G, RANSMAYR, G, et al. Diminuição da atividade da catalase, mas inalterada atividade da superóxido dismutase em cérebros de pacientes com demência de tipo Alzheimer. J Neurochem. n. 64, v. 3, p. 1216-1223, 1995.

GUERRERO, J.M.; REITER, R.J. Melatonin-immune system relationships. Curr: Top Med Chem., v.2, p. 167-179, 2002.

HARDELAND, R. et al. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog Neurobiol., v.93, n.3, p.350-384, 2011.

HARDELAND, R. Melatonin in aging and disease - Multiple consequences of reduced secretions, options and limits of treatment. Aging and Disease, v.3, n. 2, p. 1-32, 2012.

HARDELAND, R.; FUHRBERG, B. Ubiquitous melatonin - Presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol., v.2, p. 25-45, 1996.

IZQUIERDO, I. . Memória. Porto Alegre: Editora Artes Médicas, ArtMed, p. 96, 2002.

LEE, M.Y. et al. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J. Pineal. Res., v.42, n.3, p. 297-309, 2007.

LEE, R. et al. Regulation of cell survival by secreted proneurotrophins. Science, v. 294, p.1945-1948, 2001.

LIMA, F. B. et al. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am. J. Physiol., v. 275, n. 6, p. 934-941, 1998.

LIU, X, J. et al. Melatonin protects against amyloid???induced impairments of hippocampal LTP and spatial learning in rats. Synapse, v. 67, n. 9, p. 626-636, 2013.

MACHADO,J; CARAM, C,L,B; FRANK, A, A; SOARES, E, A; LAKS, J. Estado nutricional na doença de Alzheimer. Rev Assoc Med Bras ; v. 55, n. 2. P. 188-191, 2009.

MAURICE, T, LOCKHART, B. P. PRIVAT, A. Amnesia induced in mice by centrally administered ?-amyloid peptides involves cholinergic dysfunction. Brain research, v. 706, n. 2, p. 181-193, 1996.

MAYO, J.C. et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5- methoxykynuramine (AFMK) and N1-acetyl-5- methoxykynuramine (AMK), in macrophages. J. Neuroimmunol., v.165, p.139-149, 2005.

MIGUEL-HIDALGO, J. J. et al. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid ? 1–40. European journal of pharmacology, v. 692, n. 1, p. 38-45, 2012.

PAXINOS, G E WATSON, C E CARRIVE, P E KIRKCALDIE, MTK E ASHWELL, K, Chemoarchitectonic Atlas of the Rat Brain, Elsevier, EUA, pp. 375. ISBN 978-0-12-374237-7, 2009.

POHANKA, M. Doença de Alzheimer e estresse oxidativo: uma revisão. Curr Med Chem. 2014; v. 21, n. 3, p. 356-364, 2014.

QUERFURTH, H. W.; LAFERLA, F. M. Alzheimer's Disease Reply. New England Journal of Medicine, v.362, n.19, p.1844-1845, 2010.

REITER, R. J.; TAN, D. X.; TERRON, M. P.; FLORES, L.J.; CZARNOCKI, Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim, v.54, n.1, p.1-9, 2007.

RUSSELL, B. História do pensamento ocidental. São Paulo: Publicações, 2001.

SALÉN, J.C.W. Animal models: principles and problems. 3.ed. Boston: CRC Press, 1995.

SIGURDSSON, E. M. et al. Bilateral injections of amyloid-? 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiology of aging, v. 18, n. 6, p. 591-608, 1997.

STEPANICHEV, M. Y. et al. Single intracerebroventricular administration of amyloid-beta (25–35) peptide induces impairment in short-term rather than long-term memory in rats. Brain research bulletin, v. 61, n. 2, p. 197-205, 2003.

SUN, Y. I, OBERLEY, L. W, LI, Y. A simple method for clinical assay of superoxide dismutase. Clinical chemistry, v. 34, n. 3, p. 497-500, 1988.

WORLD HEALTH ORGANIZATION (WHO). Envelhecimento ativo: uma política de saúde. Brasília: Organização Pan-Americana da Saúde, 2014.

WU, U. I. et al. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J. Pineal Res., v.50, n.2, p.159-170, 2011.

ZHANG, Lu et al. Curcumin improves amyloid ?-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PloS one, v. 10, n. 6, p. e0131525, 2015.

ZHANG, Qi et al. BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules, v. 16, n. 12, p. 10146-10156, 2011.

ZHAO, B.; ZHONG, M.; JIN, K. Neurogenesis and neurodegenerative diseases in human. Panminerva medica, v. 50, n. 1, p. 55-64, 2008. 107

ZHAO, Chunmei; DENG, Wei; GAGE, Fred H. Mechanisms and functional implications of adult neurogenesis. Cell, v. 132, n. 4, p. 645-660, 2008.

ZHAO, Wei-Qin et al. Inhibition of calcineurin-mediated endocytosis and ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid ? oligomer-induced synaptic disruption. Journal of Biological Chemistry, v. 285, n. 10, p. 7619-7632, 2010.

ZHAO, Yang; GONG, Cheng-Xin. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cellular and molecular neurobiology, v. 35, n. 1, p. 101-110, 2015.

ZHOU, Wei-wei et al. Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radical Biology and Medicine, v. 74, p. 50-63, 2014.

Published

2020-10-15

How to Cite

Godinho, W. D. N., Aguiar, I. D. de, Filho, F. S. L. V., Almeida, G. N. S., Silva, B. F. da, Albuquerque, I. B. de, Ceccatto, V. M., & Soares, P. M. (2020). Atividade da superóxido dismutase em modelo de animal com lesão Hipocampal induzida por peptideo A?1-42 e suplementados com melatonina/ Peroxide activity dismutes in animal model with Hypical lesion induced by peptide A?1-42 and supplemented with melatonine. Brazilian Journal of Development, 6(10), 78514–78527. https://doi.org/10.34117/bjdv6n10-328

Issue

Section

Original Papers