Investigation of the urban pruning wastes as biofuels and possible utilization in thermal systems / Investigação dos resíduos da poda urbana como biocombustíveis e possível utilização em sistemas térmicos

Authors

  • Julie Brenda Santos da Silva
  • Lilian D. Moura Torquato
  • Paula Manoel Crnkovic
  • Glauber Cruz

DOI:

https://doi.org/10.34117/bjdv7n3-265

Keywords:

biomass, bioenergy, characterization, feedstock, urban pruning, potential.

Abstract

The urban afforestation is an important part of cities that provide well-being and health for their citizens; however, the urban afforestation needs constant pruning, which generates a considerable amount of waste that are not able to be disposal in land. In the other hand is an emerging need of clean energy production due the damage caused by the fossil fuels. An alternative to solve these issues is to use the urban pruning waste as feedstock for thermochemical conversion with the goal to produce clean energy. However, is necessary investigate the physical-chemical properties of urban pruning waste as possible biofuel, for this propose this study realize several experiments such as: Thermal Analysis (DG/DTG and DTA), Proximate and Ultimate Analysis, Inductively Coupled Plasm – Optical Emission Spectrometry (ICP-OES), Scanning Electronic Microscopy (SEM), Electron Diffraction Spectrometry (EDS) and Fourier Transform Infrared (FTIR). The analysis of the urban pruning waste achieves as result a considerable energy property and low amount of pollutants-forming elements for that biomass, which mean, that the urban pruning is an profitable source for energy generation and also contents a proper chemical composition.

References

ABNT. 1984. 1984. Associação Brasileira De Normas Técnicas, NBR 8633: Carvão vegetal: determinação do poder calorífico: método de ensaio. 1984. (Brazilian Association of Technical Standards - Charcoal: determination of calorific value: test method).

Ahmadi, Farhad, Abbas Rajaee Rad, Mark T Holtzapple, and Mohammad Javad Zamiri. 2012. “Short-Term Oxidative Lime Pretreatment of Palm Pruning Waste for Use as Animal Feedstuff.” Journal of the Science of Food and Agriculture 93 (8): 2061–70. https://doi.org/10.1002/jsfa.5963.

Akhtar, Nadeem, Dinesh Goyal, and Arun Goyal. 2016. “Physico-Chemical Characteristics of Leaf Litter Biomass to Delineate the Chemistries Involved in Biofuel Production.” Journal of the Taiwan Institute of Chemical Engineers 62 (May): 239–46. https://doi.org/10.1016/j.jtice.2016.02.011.

Alzate, Carlos Ariel Cardona, Juan Camilo Solarte Toro, and Álvaro Gómez Peña. 2018. “Fermentation, Thermochemical and Catalytic Processes in the Transformation of Biomass through Efficient Biorefineries.” Catalysis Today 302 (March): 61–72. https://doi.org/10.1016/j.cattod.2017.09.034.

ASTM. 1987. 1987. American Society for Testing and Materials – ASTM E711, 1987. Standard Test Method for Gross Calorific Value of refuse – Derived Fuel by the Bomb Calorimeter, ASTM International, West Conshohocken, PA, 2019,www.astm.org.

ASTM. 2019. 2019. American Society for Testing and Materials – ASTM D240-19, Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter, ASTM International, West Conshohocken, PA, 2019,www.astm.org.

Barbanera, M., E. Lascaro, V. Stanzione, A. Esposito, R. Altieri, and M. Bufacchi. 2016. “Characterization of Pellets from Mixing Olive Pomace and Olive Tree Pruning.” Renewable Energy 88 (April): 185–91. https://doi.org/10.1016/j.renene.2015.11.037.

Basu, Prabir. 2010. Biomass Gasification and Pyrolysis?: Practical Design and Theory. Burlington, Ma: Academic Press.

Bove, Dario, Cristina Moliner, Marco Marco Baratieri, Barbara Bosio, and Elisabetta Arato. 2016. “Kinetic Characterization of the Residues from the Pruning of Apple Trees for Their Use as Energy Vectors.” Chemical Engineering Transactions 50: 1–6. https://doi.org/10.3303/CET1650001.

Braz, C. E. M. 2014. “Characterization of Lignocellulosic Biomass for Use in Thermal Processes of Energy Generation.” Dissertation (Master Science in Chemistry), São Paulo State University. São Paulo, Brazil.

Caruso, Francesco, Sara Mantellato, Marta Palacios, and Robert J. Flatt. 2017. “ICP-OES Method for the Characterization of Cement Pore Solutions and Their Modification by Polycarboxylate-Based Superplasticizers.” Cement and Concrete Research 91 (January): 52–60. https://doi.org/10.1016/j.cemconres.2016.10.007.

Chen, Dezhen. 2019. “Examples of Thermochemical and Biological Treatment Technologies for Sustainable Waste Management in China.” Substitute Natural Gas from Waste, 425–54. https://doi.org/10.1016/b978-0-12-815554-7.00016-7.

Chen, Jiao, Jiajin Liang, and Shubin Wu. 2016. “Lignin-Rich Biomass of Cotton by-Products for Biorefineries via Pyrolysis.” Bioresource Technology 218 (October): 402–9. https://doi.org/10.1016/j.biortech.2016.06.122.

Cortez, L. A. B., E. E. S. Lora, and E. O. Gomez. 2008. Biomassa Para Energia. (Biomass for energy). Editora Unicamp.

Cruz, Glauber. 2015. “Características Físico-Químicas de Biomassas Lignocelulósicas e a Correlação Entre Suas Emissões e Os Resíduos Gerados Sob Diferentes Condições Atmosféricas Em Um Forno Tubular de Queda Livre (DTF).” Tese (Doutorado em Engenharia Mecânica), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2015.

Cruz. 2019. “Assessment of the Physical–Chemical Properties of Residues and Emissions Generated by Biomass Combustion under N2/O2 and CO2/O2 Atmospheres in a Drop Tube Furnace (DTF).” Journal of Thermal Analysis and Calorimetry 138 (1): 401–15. https://doi.org/10.1007/s10973-019-08238-0.

Cruz, Glauber, Alyson da Luz Pereira Rodrigues, Darlan Ferreira da Silva, and Wolia Costa Gomes. 2020. “Physical–Chemical Characterization and Thermal Behavior of Cassava Harvest Waste for Application in Thermochemical Processes.” Journal of Thermal Analysis and Calorimetry, January. https://doi.org/10.1007/s10973-020-09330-6.

Cruz, Glauber, Patrícia A. Santiago, Carlos E. M. Braz, Paulo Seleghim, and Paula Manoel Crnkovic. 2018. “Investigation into the Physical–Chemical Properties of Chemically Pretreated Sugarcane Bagasse.” Journal of Thermal Analysis and Calorimetry 132 (2): 1039–53. https://doi.org/10.1007/s10973-018-7041-1.

DIN. 2003. 2003. Deutsches Institutfür Normung (German Institute for Standardization) - DIN 51900: 2003. Testing of solid and liquid fuels - Determination of the gross calorific value by the bomb calorimeter and calculation of the net calorific value.

Duranay, Neslihan Deveci, and Gizem Akku?. 2019. “Solid Fuel Production with Torrefaction from Vineyard Pruning Waste.” Biomass Conversion and Biorefinery, August. https://doi.org/10.1007/s13399-019-00496-0.

El-Sayed, Saad A., and M.E. Mostafa. 2014. “Pyrolysis Characteristics and Kinetic Parameters Determination of Biomass Fuel Powders by Differential Thermal Gravimetric Analysis (TGA/DTG).” Energy Conversion and Management 85 (September): 165–72. https://doi.org/10.1016/j.enconman.2014.05.068.

García, Roberto, Consuelo Pizarro, Antonio G. Lavín, and Julio L. Bueno. 2012. “Characterization of Spanish Biomass Wastes for Energy Use.” Bioresource Technology 103 (1): 249–58. https://doi.org/10.1016/j.biortech.2011.10.004.

Gil, María V., Juan Riaza, Lucía Álvarez, Covadonga Pevida, and Fernando Rubiera. 2015. “Biomass Devolatilization at High Temperature under N2 and CO2: Char Morphology and Reactivity.” Energy 91 (November): 655–62. https://doi.org/10.1016/j.energy.2015.08.074.

González, J.F., J. Gañán, A. Ramiro, C.M. González-García, J.M. Encinar, E. Sabio, and S. Román. 2006. “Almond Residues Gasification Plant for Generation of Electric Power. Preliminary Study.” Fuel Processing Technology 87 (2): 149–55. https://doi.org/10.1016/j.fuproc.2005.08.010.

González, J.F., S. Román, J.M. Encinar, and G. Martínez. 2009. “Pyrolysis of Various Biomass Residues and Char Utilization for the Production of Activated Carbons.” Journal of Analytical and Applied Pyrolysis 85 (1–2): 134–41. https://doi.org/10.1016/j.jaap.2008.11.035.

Huron, Maïté, Sophia Oukala, Jérôme Lardière, Nicolas Giraud, and Capucine Dupont. 2017. “An Extensive Characterization of Various Treated Waste Wood for Assessment of Suitability with Combustion Process.” Fuel 202 (August): 118–28. https://doi.org/10.1016/j.fuel.2017.04.025.

IBGE. 2007. 2007. Relatório de Estação Geodésica. (Geography and Statistic Brazilian Institute – Geodetic Station). Available: www.bdg.ibge.gov.br. Accessed: september 10, 2019.

ISO. 1995. 1995. International Standards Organization - ISO 1928:1995. Solid Mineral Fuels - Determination of Gross Calorific Value by the bomb calorimetric method, and calculation of net calorific value.

Jayaraman, Kandasamy, Mustafa Versan Kok, and Iskender Gokalp. 2016. “Combustion Properties and Kinetics of Different Biomass Samples Using TG–MS Technique.” Journal of Thermal Analysis and Calorimetry 127 (2): 1361–70. https://doi.org/10.1007/s10973-016-6042-1.

Jenkins, Bryan M., Larry L. Baxter, and Jaap Koppejan. 2019. “Biomass Combustion.” Thermochemical Processing of Biomass, March, 49–83. https://doi.org/10.1002/9781119417637.ch3.

Kan, Tao, Vladimir Strezov, and Tim J. Evans. 2016. “ChemInform Abstract: Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters.” ChemInform 47 (28). https://doi.org/10.1002/chin.201628276.

Kang, Kang, Mingqiang Zhu, Guotao Sun, Ling Qiu, Xiaohui Guo, Venkatesh Meda, and Runcang Sun. 2018. “Codensification of Eucommia Ulmoides Oliver Stem with Pyrolysis Oil and Char for Solid Biofuel: An Optimization and Characterization Study.” Applied Energy 223 (August): 347–57. https://doi.org/10.1016/j.apenergy.2018.04.069.

Kanwal, Sumaira, Shahid Munir, Nawaz Chaudhry, and Hafiza Sana. 2019. “Physicochemical Characterization of Thar Coal and Torrefied Corn Cob.” Energy Exploration & Exploitation 37 (4): 1286–1305. https://doi.org/10.1177/0144598719834766.

Liu, Guicai, Yanfen Liao, Shaode Guo, Xiaoqian Ma, Chengcai Zeng, and Jie Wu. 2016. “Thermal Behavior and Kinetics of Municipal Solid Waste during Pyrolysis and Combustion Process.” Applied Thermal Engineering 98 (April): 400–408. https://doi.org/10.1016/j.applthermaleng.2015.12.067.

Liu, Qian, Zhaoping Zhong, Shurong Wang, and Zhongyang Luo. 2011. “Interactions of Biomass Components during Pyrolysis: A TG-FTIR Study.” Journal of Analytical and Applied Pyrolysis 90 (2): 213–18. https://doi.org/10.1016/j.jaap.2010.12.009.

Martinez, Clara Lisseth Mendoza, Elém Patrícia Alves Rocha, Angélica de Cassia Oliveira Carneiro, Fernando José Borges Gomes, Larisse Aparecida Ribas Batalha, Esa Vakkilainen, and Marcelo Cardoso. 2019. “Characterization of Residual Biomasses from the Coffee Production Chain and Assessment the Potential for Energy Purposes.” Biomass and Bioenergy 120 (January): 68–76. https://doi.org/10.1016/j.biombioe.2018.11.003.

Mishra, Ranjeet Kumar, and Kaustubha Mohanty. 2018a. “Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis.” Bioresource Technology 251 (March): 63–74. https://doi.org/10.1016/j.biortech.2017.12.029.

Mitu, Mahfuzara, Md. Azharul Islam, Md. Saidur Rahman, SM. Feroz, Abdus Subhan Mollick, and Md. Enamul Kabir. 2019. “Pyrolysis Kinetic Study on Waste Particle Residue from Particle Board Industry.” Journal of the Indian Academy of Wood Science 16 (1): 58–66. https://doi.org/10.1007/s13196-019-00236-x.

Modesto, Marcelo, Adriana Aoki C., Andressa Lodi, and Eduardo Antonio Pina. 2016. “Assessment of the Potential to Increase Electricity Generation from Sugarcane Straw in Brazilian Sugarcane Cogeneration Plants.” Chemical Engineering Transactions, no. 50: 193–198. https://doi.org/10.3303/CET1650033.

Müsellim, Ece, Mudassir Hussain Tahir, Muhammad Sajjad Ahmad, and Selim Ceylan. 2018. “Thermokinetic and TG/DSC-FTIR Study of Pea Waste Biomass Pyrolysis.” Applied Thermal Engineering 137 (June): 54–61. https://doi.org/10.1016/j.applthermaleng.2018.03.050.

Naqvi, Salman Raza, Sana Jamshaid, Muhammad Naqvi, Wasif Farooq, Muhammad Bilal Khan Niazi, Zaeem Aman, Muhammad Zubair, et al. 2018. “Potential of Biomass for Bioenergy in Pakistan Based on Present Case and Future Perspectives.” Renewable and Sustainable Energy Reviews 81 (January): 1247–58. https://doi.org/10.1016/j.rser.2017.08.012.

Nozela, W. C., C. E. M. Braz, S. Almeida, C. A. Ribeiro, and M. S. Crespi. 2017. “Mixture of Biomass to Energy Reuse.” Journal of Thermal Analysis and Calorimetry 131 (1): 765–69. https://doi.org/10.1007/s10973-017-6374-5.

Nozela, W. C., C. F. V. Nozela, F. R. Silva, D. S. Dias, S. Almeida, C. A. Ribeiro, and M. S. Crespi. 2018. “Kinetic Study of the Energetic Reuse from Torrefied Sewage Sludge and Urban Pruning Blends.” Journal of Thermal Analysis and Calorimetry 134 (2): 1285–91. https://doi.org/10.1007/s10973-018-7534-y.

Nunes, L.J.R., J.C.O. Matias, and J.P.S. Catalão. 2016. “Biomass Combustion Systems: A Review on the Physical and Chemical Properties of the Ashes.” Renewable and Sustainable Energy Reviews 53 (January): 235–42. https://doi.org/10.1016/j.rser.2015.08.053.

Parascanu, M.M., F. Sandoval-Salas, G. Soreanu, J.L. Valverde, and L. Sanchez-Silva. 2017. “Valorization of Mexican Biomasses through Pyrolysis, Combustion and Gasification Processes.” Renewable and Sustainable Energy Reviews 71 (May): 509–22. https://doi.org/10.1016/j.rser.2016.12.079.

Pérez, A., M.A. Martín-Lara, A. Gálvez-Pérez, M. Calero, and A. Ronda. 2018. “Kinetic Analysis of Pyrolysis and Combustion of the Olive Tree Pruning by Chemical Fractionation.” Bioresource Technology 249 (February): 557–66. https://doi.org/10.1016/j.biortech.2017.10.045.

Pérez-Arévalo, J.J., and B. Velázquez-Martí. 2018. “Evaluation of Pruning Residues of Ficus Benjamina as a Primary Biofuel Material.” Biomass and Bioenergy 108 (January): 217–23. https://doi.org/10.1016/j.biombioe.2017.11.017.

Poletto, Matheus, Ademir J. Zattera, Maria M.C. Forte, and Ruth M.C. Santana. 2012. “Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size.” Bioresource Technology 109 (April): 148–53. https://doi.org/10.1016/j.biortech.2011.11.122.

Rodilla, I., M.L. Contreras, and A. Bahillo. 2018. “Thermogravimetric and Mass Spectrometric (TG-MS) Analysis of Sub-Bituminous Coal-Energy Crops Blends in N2, Air and CO2/O2 Atmospheres.” Fuel 215 (March): 506–14. https://doi.org/10.1016/j.fuel.2017.09.102.

Silva Filho, Valdemar Francisco da, Luciane Batistella, José Luiz Francisco Alves, Jean Constantino Gomes da Silva, Christine Albrecht Althoff, Regina de Fátima Peralta Muniz Moreira, and Humberto Jorge José. 2019. “Evaluation of Gaseous Emissions from Thermal Conversion of a Mixture of Solid Municipal Waste and Wood Chips in a Pilot-Scale Heat Generator.” Renewable Energy 141 (October): 402–10. https://doi.org/10.1016/j.renene.2019.04.032.

Torquato, Lilian D. M., Paula M. Crnkovic, Clóvis A. Ribeiro, and Marisa S. Crespi. 2016. “New Approach for Proximate Analysis by Thermogravimetry Using CO2 Atmosphere.” Journal of Thermal Analysis and Calorimetry 128 (1): 1–14. https://doi.org/10.1007/s10973-016-5882-z.

Velázquez-Martí, B., J. Gaibor-Cházvez, Z. Niño-Ruiz, and S. Narbona-Sahuquillo. 2018. “Complete Characterization of Pruning Waste from the Lechero Tree (Euphorbia Laurifolia L.) as Raw Material for Biofuel.” Renewable Energy 129 (129): 629–37. https://doi.org/10.1016/j.renene.2018.06.050.

Wang, Shurong, Gongxin Dai, Haiping Yang, and Zhongyang Luo. 2017. “Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review.” Progress in Energy and Combustion Science 62 (September): 33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

Xu, Feng, Yong-Cheng Shi, and Donghai Wang. 2013. “X-Ray Scattering Studies of Lignocellulosic Biomass: A Review.” Carbohydrate Polymers 94 (2): 904–17. https://doi.org/10.1016/j.carbpol.2013.02.008.

Published

2021-03-12

How to Cite

Silva, J. B. S. da, Torquato, L. D. M., Crnkovic, P. M., & Cruz, G. (2021). Investigation of the urban pruning wastes as biofuels and possible utilization in thermal systems / Investigação dos resíduos da poda urbana como biocombustíveis e possível utilização em sistemas térmicos. Brazilian Journal of Development, 7(3), 24730–24750. https://doi.org/10.34117/bjdv7n3-265

Issue

Section

Original Papers