Influência de diferentes dietas hipercalóricas sobre o estresse oxidativo cardíaco/ Influence of different hypercaloric diets on cardiac oxidative stress

Authors

  • Patrícia Vasconcelos Fontana Gasparini
  • Suellem Torezani Sales
  • Amanda Martins Matias
  • Ana Paula Lima- Leopoldo
  • André Soares Leopoldo

DOI:

https://doi.org/10.34117/bjdv7n3-734

Keywords:

espécies reativas de oxigênio, estresse oxidativo, dieta, coração.

Abstract

A alta ingestão de dietas hipercalóricas vem sendo mundialmente observada, acarretando aumento do tecido adiposo abdominal com concomitante quadro inflamatório sistêmico de baixo grau, desequilíbrio de citocinas, complicações metabólicas e cardiovasculares. Além disso, observa-se aumento da produção de radicais livres, que associado a diminuição das defesas antioxidantes, resultam em estresse oxidativo. Essa revisão sistemática objetiva analisar estudos que utilizam intervenções nutricionais por meio de dietas hipercalóricas e sua influência no estresse oxidativo cardíaco. A busca virtual foi realizada nas bases de dados Medline, via Pubmed e Bireme, ScienceDirect, Lilacs, e Scielo utilizando como descritores “oxidative stress”, “heart”, “myocardial”, “cardiac”, “high-fat diet”, “high-carbohydrate diet” e “diet”. Foram identificados 739 artigos, os quais após critérios de elegibilidade resultaram em 19 estudos. Estes foram separados em estudos experimentais envolvendo diferentes protocolos de dietas hipercalóricas ricas em gordura e/ou carboidratos.  Os estudos demonstram relação entre consumo de dietas hipercalóricas e estresse oxidativo cardíaco, baseadas em gorduras saturadas ou insaturadas, acrescidas ou não de açúcar observado pelo aumento da lipoperoxidação, carbonilação proteica e elevação das espécies reativas de oxigênio in situ, reporta-se possível envolvimento da enzima NADPH oxidase neste processo, bem como redução das defesas antioxidantes porém há carência de informações sobre as possíveis vias sinalizadoras envolvidas nesse processo.

 

References

BRASIL. Ministério da Saúde. Guia alimentar para a população brasileira. Brasília:2ª ed; 2014. Disponível em:< https://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2ed.pdf>.

Dourmashkin JT, Chang GQ, Gayles EC, Hill JO, Fried SK, Julien C, et al. Different forms of obesity as a function of diet composition. Int J Obes (Lond). 2005;29(11):1368-78. Diponível em: <https://www.nature.com/articles/0803017>.

Oliveira LS, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem. 2014;25(2):193-200. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0955286313002313?via%3Dihub>.

Matias AM, Estevam WM, Coelho PM, Haese D, Kobi JBBS, Lima-Leopoldo AP, et al. Differential effects of high sugar, high lard or a combination of both on nutritional, hormonal and cardiovascular metabolic profiles of rodents. Nutrients. 2018;10(8):1071. Disponível em: <https://www.mdpi.com/2072-6643/10/8/1071>.

Donovan EL, Pettine SM, Hickey MS, Hamilton KL, Miller BF. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol Metab Syndr. 2013;5(1):24. Disponível em: <https://dmsjournal.biomedcentral.com/articles/10.1186/1758-5996-5-24>.

Mika A, Sledzinski T. Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev. 2017;18(2):247-272. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1111/obr.12475>.

Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118(11):1786-807. Disponível em: <https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.115.306885?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed>.

Gomes F, Telo DF, Souza HP, Nicolau JC, Halpern A, Serrano CV Jr. Obesidade e doença arterial coronariana: papel da inflamação vascular. Arq. Bras. Cardiol. 2010;94(2):273-279. Disponível em: <https://www.scielo.br/scielo.php?pid=S0066-782X2010000200021&script=sci_abstract&tlng=pt>.

Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231-55. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574951/>.

Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655-73. Disponível em: < https://journals.lww.com/jhypertension/Abstract/2000/18060/Role_of_oxidative_stress_in_cardiovascular.2.aspx>.

Bhatti SN, Li JM. Nox2 dependent redox-regulation of Akt and ERK1/2 to promote left ventricular hypertrophy in dietary obesity of mice. Biochem Biophys Res Commun. 2020;528(3):506-13. Disponível em:<https://www.sciencedirect.com/science/article/abs/pii/S0006291X20310998>.

Pakiet A, Jakubiak A, Mierzejewska P, Zwara A, Liakh I, Sledzinski T, et al. The effect of a high-fat diet on the fatty acid composition in the hearts of mice. Nutrients. 2020;12(3):824. Disponível em: <https://www.mdpi.com/2072-6643/12/3/824>.

Apaijai N, Arinno A, Palee S, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, et al. High-saturated fat high-sugar diet accelerates left-ventricular dysfunction faster than high-saturated fat diet alone via increasing oxidative stress and apoptosis in obese-insulin resistant rats. Mol Nutr Food Res. 2019;63(2):e1800729. Disponível em:<https://onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201800729>.

Emelyanova L, Boukatina A, Myers C, Oyarzo J, Lustgarten J, Shi Y, et al. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. PLoS One. 2019;14(7):e0217045. Disponível em: < https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217045>.

Sz?cs G, Sója A, Péter M, Sárközy M, Bruszel B, Siska A, et al. Prediabetes induced by fructose-enriched diet influences cardiac lipidome and proteome and leads to deterioration of cardiac function prior to the development of excessive oxidative stress and cell damage. Oxid Med Cell Longev. 2019;3218275. Disponível em: <https://www.hindawi.com/journals/omcl/2019/3218275/>.

Ma SR, Xie XW. NLRC5 deficiency promotes myocardial damage induced by high fat diet in mice through activating TLR4/NF-Kb. Biomed Pharmacother. 2017;91(7):755-766. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0753332216329900>.

Hu N, Zhang Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-?B/JNK-dependent activation of autophagy. Biochim Biophys Acta Mol Basis Dis.2017;1863(8):2001-2011. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0925443917300157?via%3Dihub>.

Hunter I, Soler A, Joseph G, Hutcheson B, Bradford C, Zhang FF, et al. Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet. Am J Physiol Heart Circ Physiol. 2017;312(4):H742-H751. Disponível em: <https://journals.physiology.org/doi/full/10.1152/ajpheart.00535.2016?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org>.

Yu HT, Fu XY, Liang B, Wang S, Liu JK, Wang SR, et al. Oxidative damage of mitochondrial respiratory chain in different organs of a rat model of diet-induced obesity. Eur J Nutr. 2017;57(5):1957-1967. Disponível em: <https://link.springer.com/article/10.1007%2Fs00394-017-1477-0>.

Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD,et al. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease. J Am Heart Assoc. 2016 11;5(1):e002555. Disponível em: <https://www.ahajournals.org/doi/10.1161/JAHA.115.002555?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed>.

Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10(9):e0138609. Disponível em: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138609>.

Chou IP, Chiu YP, Ding ST, Liu BH, Lin YY, Chen CY. Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice--possible involvement of oxidative stress and autophagy. Endocr Res. 2014;39(4):173-9. Disponível em: <https://www.tandfonline.com/doi/abs/10.3109/07435800.2013.879165?journalCode=ierc20/>.

Enos RT, Velázquez KT, Murphy EA. Insight into the impact of dietary saturated fat on tissue-specific cellular processes underlying obesity-related diseases. J Nutr Biochem. 2014;25(6):600-12. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0955286314000394?via%3Dihub>.

Martínez-Martínez E, Jurado-López R, Valero-Muñoz M, Bartolomé MV, Ballesteros S, Luaces M, et al. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity. J Hypertens. 2014;32(5):1104-14. Disponível em: <https://journals.lww.com/jhypertension/Abstract/2014/05000/Leptin_induces_cardiac_fibrosis_through.25.aspx>.

Sverdlov AL, Elezaby A, Behring JB, Bachschmid MM, Luptak I, Tu VH, et al. High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. J Mol Cell Cardiol. 2014;78:165-73. Disponível em: <https://www.jmcc-online.com/article/S0022-2828(14)00244-2/fulltext>.

Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. Disponível em: <https://dmsjournal.biomedcentral.com/articles/10.1186/1758-5996-3-17>.

Ballal K, Wilson CR, Harmancey R, Taegtmeyer H. Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart. Mol Cell Biochem. 2010;344(1-2):221-30. Disponível em: <https://link.springer.com/article/10.1007%2Fs11010-010-0546-y>.

Pinotti MF, Silva MD, Sugizaki MM, Novelli YSD, Sant'ana LS, Aragon FF, et al. Influências de dietas ricas em ácidos graxos saturados e insaturados sobre o miocárdio de ratos. Arq. Bras. Cardiol. 2007;88(3):346-53. Disponível em: <https://www.researchgate.net/publication/239491059_Influencias_de_dietas_ricas_em_acidos_graxos_saturados_e_insaturados_sobre_o_miocardio_de_ratos>.

Pinotti MF, Silva MD, Sugizaki MM, Diniz YS, Sant'Ana LS, Aragon FF, et al. Effect of unsaturated fatty acids on myocardial performance, metabolism and morphology. Braz J Med Biol Res. 2006;39(2):305-12. Disponível em: <https://www.researchgate.net/publication/51373109_Effect_of_unsaturated_fatty_acids_on_myocardial_performance_metabolism_and_morphology>.

Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603-16. Disponível em: <https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.113.302095>.

D'Souza K, Nzirorera C, Kienesberger PC. Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta. 2016;1861(10):1513-24. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S1388198116300439?via%3Dihub>.

Gray S, Kim JK. New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab. 2011;22(10):394-403. Disponível em: < https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(11)00073-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1043276011000737%3Fshowall%3Dtrue>.

Martínez JA. Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J Physiol Biochem. 2006;62(4):303-6. Disponível em: <https://link.springer.com/article/10.1007/BF03165759>.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-25. Disponível em: <https://diabetes.diabetesjournals.org/content/54/6/1615.long>.

Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939-45. Disponível em: <https://diabetes.diabetesjournals.org/content/49/11/1939.long>.

Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330-41. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S1871403X13000434>.

Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes (Lond). 2006;30(3):400-18. Disponível em: <https://www.nature.com/articles/0803177>.

Ighodaro OM, Akinloye AO. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. J Med. 2018;54(4):287-93. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2090506817301550>.

Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595-603. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0009912099000752?via%3Dihub>.

Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471-8. Disponível em: <https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(03)002335?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614703002335%3Fshowall%3Dtrue>.

Published

2021-03-28

How to Cite

Gasparini, P. V. F., Sales, S. T., Matias, A. M., Leopoldo, A. P. L.-., & Leopoldo, A. S. (2021). Influência de diferentes dietas hipercalóricas sobre o estresse oxidativo cardíaco/ Influence of different hypercaloric diets on cardiac oxidative stress. Brazilian Journal of Development, 7(3), 31526–31547. https://doi.org/10.34117/bjdv7n3-734

Issue

Section

Original Papers