Desempenho de Filtração e Determinação do Diâmetro das Nanofibras: Influência do Método de Medição e Microscópio Eletrônico de Varredura / Filtration Performance and Determination of Nanofiber Diameter: Influence of Measurements Method and Scanning Electron Microscope

Ana Isabela Pianowski Salussoglia, Vádila Giovana Guerra, Mônica Lopes Aguiar

Abstract


O interesse na produção de nanofibras poliméricas tem aumentado e elas vêm sendo aplicadas nas mais diferentes áreas, como na filtração de ar. A adição de uma camada de nanofibras ao meio filtrante melhora o desempenho de filtração e visa, em geral, aumentar a eficiência de coleta de partículas sem aumentar significativamente a queda de pressão. O diâmetro médio das fibras e a distribuição de tamanho das fibras são parâmetros importantes para a caracterização de meios filtrantes e são essenciais na previsão de parâmetros por modelos matemáticos. Assim sendo, o presente estudo avaliou o desempenho de filtração de um meio filtrante com camada de nanofibras e mediu o diâmetro médio e a distribuição de tamanho das fibras utilizando dois microscópios eletrônicos de varredura e duas metodologias para medição dos diâmetros das nanofibras (manual e automática). A eficiência de coleta global do meio filtrante foi de 73,63%, a queda de pressão de 60,6 Pa para a velocidade superficial de 4,72 cm/s e a permeabilidade de 2,51 10-8 m2. A comparação dos diâmetros médios obtidos através dos diferentes microscópios eletrônico de varredura mostrou que o equipamento que proporcionou maior quantidade de pixels por imagem mediu o diâmetro da nanofibra mais próximo do real. Os métodos manual e automatizado mediram os diâmetros das nanofibras com valores semelhantes, divergindo o valor em torno de 10%. Foi avaliada a aplicação dos modelos gaussiano e lognormal a distribuição de tamanho das fibras e o modelo lognormal proporcionou melhores ajustes.


Keywords


desempenho de filtração, nanofibras, microscopia eletrônica de varredura, caracterização, diâmetro de fibra.

References


ABU GHALIA, M.; DAHMAN, Y. Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications. Polymer Testing, v. 61, p. 114–131, 2017.

AGUBRA, V. A. et al. ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. Journal of Applied Polymer Science, v. 133, n. 1, p. 1–8, 2016.

AHN, Y. C. et al. Development of high efficiency nanofilters made of nanofibers. Current Applied Physics, v. 6, n. 6 SPEC. ISS., p. 1030–1035, 2006.

BALGIS, R. et al. Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chemical Engineering Science, v. 137, p. 947–954, 2015.

BIZARRIA, M. T. M.; D ’ÁVILA, M. A.; MEI, L. H. I. NON-WOVEN NANOFIBER CHITOSAN/PEO MEMBRANES OBTAINED BY ELECTROSPINNING. Brazilian Journal of Chemical Engineering, v. 31, n. 01, p. 57–68, 2014.

BORTOLASSI, A. C. C.; GUERRA, V. G.; AGUIAR, M. L. Characterization and evaluate the efficiency of different filter media in removing nanoparticles. Separation and Purification Technology, v. 175, p. 79–86, 2017.

DHAND, C. et al. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials, v. 138, p. 153–168, 2017.

DIAS, J. C. et al. Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, v. 31, n. 6, p. 770–776, 2012.

DONOVAN, R. P. Fabric filtration for combustion sources : fundamentals and basic technology. New York: Marcel Dekker Inc, 1985.

DULLIEN, F. A. L. Introduction to Industrial Gas Cleaning. San Diego: Academic Press, 1989.

FUKUNISHI, T. et al. Preclinical Study of Patient-Specific Cell-free Nanofiber Tissue Engineered Vascular Grafts Using Three-Dimensional Printing in a Sheep Model. The Journal of Thoracic and Cardiovascular Surgery, v. 153, n. 4, p. 924–932, 2016.

GHANBARI, K.; BATHAIE, S. Z.; MOUSAVI, M. F. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors and Bioelectronics, v. 23, n. 12, p. 1825–1831, 2008.

GIBSON, P.; SCHREUDER-GIBSON, H.; RIVIN, D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 187, n. 188, p. 469–481, 2001.

GRAFE, T.; GRAHAM, K. Polymeric Nanofibers and Nanofiber Webs : A New Class of Nonwovens. International Nanwovens Technical Conference, p. 24–26, 2002.

GRAHAM, K. et al. Polymeric Nanofibers in Air Filtration Applications. Fifteenth Annual Technical Conference & Expo of the American Filtration & Separation Society, p. 9–12, 2002.

HAYES, R. B. et al. PM 2 . 5 air pollution and cause-specific cardiovascular disease mortality. v. 3, p. 1–11, 2019.

HINDS, W. C. Aerosol technology: Properties, Behavior, and Measurement of Airborne Particles. 1999.

HOTALING, N. A. et al. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials, v. 61, p. 327–338, 2015.

IRANI, M.; SADEGHI, G. M. M.; HARIRIAN, I. The sustained delivery of temozolomide from electrospun PCL-Diol-b-PU/gold nanocompsite nanofibers to treat glioblastoma tumors. Materials Science and Engineering: C, v. 75, p. 165–174, 2017.

KESTENBACH, H.-J.; BOTTA FILHO, W. J. Microscopia Eletrônica: Transmissão e Varredura. São Paulo: ABM, 1989.

KRAUSKOPF, J. et al. Short-term exposure to traffic-related air pollution reveals a compound- specific circulating miRNA profile indicating multiple disease risks. Environment International, v. 128, n. May, p. 193–200, 2019.

KU, S. H.; LEE, S. H.; PARK, C. B. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials, v. 33, n. 26, p. 6098–6104, 2012.

LEUNG, W. W. F.; HAU, C. W. Y.; CHOY, H. F. Microfiber-nanofiber composite filter for high-efficiency and low pressure drop under nano-aerosol loading. Separation and Purification Technology, v. 206, n. February, p. 26–38, 2018.

LV, D. et al. Green Electrospun Nanofibers and Their Application in Air FiltrationMacromolecular Materials and Engineering, 2018.

MONDAL, K. et al. Highly Sensitive Porous Carbon and Metal / Carbon Conducting Nanofiber Based Enzymatic Biosensors for Triglyceride Detection. Sensors & Actuators: B. Chemical, v. 246, p. 202–214, 2017.

ÖZNERGIZ, E. . et al. Automated nanofiber diameter measurement in SEM images using a robust image analysis method. Journal of Nanomaterials, v. 2014, 2014.

PAYEN, J. et al. Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens. Textile Research Journal, v. 82, n. 19, p. 1948–1959, 2012.

RADMANESH, E. et al. Cerebral ischemic attack , epilepsy and hospital admitted patients with types of headaches attributed to PM 10 mass concentration in Abadan , Iran. Aeolian Research, v. 41, n. December 2017, p. 100541, 2019.

SADRJAHANI, M. et al. Development and characterization of highly oriented PAN nanofiber. Brazilian Journal of Chemical Engineering, v. 27, n. 04, p. 583–589, 2010.

SALUSSOGLIA, A. I. P.; TANABE, E. H.; AGUIAR, M. L. Characterization and micro and nanoparticles filtration evaluation of pan nanofibers produced by centrifugal spinning. Enciclopédia Biosfera, v. 16, n. 30, p. 103–112, 2019.

SAMBAER, W.; ZATLOUKAL, M.; KIMMER, D. The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polymer Testing, v. 29, n. 1, p. 82–94, 2010.

SHIN, E. H. et al. Determination of Electrospun Fiber Diameter Distributions Using Image Analysis Processing. Macromolecular Research, v. 16, n. 4, p. 314–319, 2008.

STANGER, J. J. et al. A comparison of automated and manual techniques for measurement of electrospun fibre diameter. Polymer Testing, v. 40, p. 4–12, 2014.

SUNDARRAJAN, S. et al. Electrospun nanofibers for air filtration applications. Procedia Engineering. Anais...2014

TANG, M. et al. Filtration efficiency and loading characteristics of PM2.5through commercial electret filt. Separation and Purification Technology, v. 195, p. 101–109, 2018.

TOMBA, E. et al. Artificial vision system for the automatic measurement of interfiber pore characteristics and fiber diameter distribution in nanofiber assemblies. Industrial and Engineering Chemistry Research, v. 49, n. 6, p. 2957–2968, 2010.

TRONVILLE, P.; RIVERS, R.; ZHOU, B. Improved CFD modeling of fibrous media for air cleaning applications. 10th World Filtration Congress, v. 49, n. 0, p. 448–452, 2008.

TSI. Mechanisms of filtration for high efficiency fibrous filters, Application Note ITI041. 2012.

WANG, Z. et al. Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer, 2017.

WORLD HEALTH ORGANIZATION (WHO). Evolution of WHO air quality guidelines. 2017.

YOO, H. S.; KIM, T. G.; PARK, T. G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, v. 61, n. 12, p. 1033–1042, 2009.

YU, D.-G. et al. Electrospun nanofiber-based drug delivery systems. Health, v. 01, n. 02, p. 67–75, 2009.

YUN, K. M. et al. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and Purification Technology, v. 75, n. 3, p. 340–345, 2010.

ZHANG, S.; SHIM, W. S.; KIM, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Materials and Design, v. 30, n. 9, p. 3659–3666, 2009.

ZHANG, Z.; LIU, B. Y. H. Experimental Study of Aerosol Filtration in the Transition Flow Regime. Aerosol Science and Technology, v. 16, n. 4, p. 227–235, 1992.

ZIABARI, M. et al. Measuring Electrospun Nanofibre Diameter: a Novel Approach. Chinese Physics Letters, v. 25, n. 8, p. 3071–3074, 2008.

ZIABARI, M.; MOTTAGHITALAB, V.; HAGHI, A. K. Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, v. 26, n. 1, p. 53–62, 2009.




DOI: https://doi.org/10.34117/bjdv7n4-250

Refbacks

  • There are currently no refbacks.