Biological activity and chemical composition of the ethanolic extracts of Miconia ferruginata DC. / Atividade biológica e composição química dos extratos etanólicos de Miconia ferruginata DC.

Poliana Ribeiro Barroso, Luiz Elídio Gregório, Kelly Cristina Kato, Fernanda Fraga Campos, Fabricio de Oliveira, Elaine Amaral Leite, Gustavo Eustáquio Brito Alvim de Melo, Helen Rodrigues Martins

Abstract


Ethnopharmacological relevance: Miconia ferruginata DC. is a native plant from Brazilian Cerrado biome known as “pixirica” or “babatenã”, widely used in traditional medicine as an anti-inflammatory and antibiotic agent. Aim of the study: This study aimed to perform a preliminary analysis of the chemical profile and screening of biological activities of the ethanolic extracts of the leaves/flowers (EELF) and of the stem (EES) of this species. Materials and methods: The techniques Ultra-Fast Liquid Chromatography with diode-array detection (UFLC-DAD) and High-Performance Liquid Chromatography with diode-array detection and mass spectrometry (HPLC-DAD-MS) performed chemical analysis. Biological activities evaluated for the antibacterial, antitripanosamatides and antitumor effect through in vitro assays, by MTT and resazurin.

Results: Although the extracts showed a negligible result for antibacterial and antitripanosamatides effect, this species showed a high cytotoxicity against tumor cells (p< 0.001) of 4T1, A549 and? MDA-MB-231, associated with low cell toxicity against fibroblasts. High concentration of phenolic compounds detected in the extracts, especially flavonoids derivates from quercetin, catechins and phenolic acids. Conclusion: These phenolic compounds have a high biological potential and may be responsible for the observed cytoxicity, together the data suggest the M. ferruginata has a great potential for being one promising candidate for further studies against cancer.


Keywords


phytochemistry, polyphenols, cancer, biological screening, traditional medicine Meso- and Southern America.

References


Alam, A., Jaiswal, V., Akhtar, S., Jayashree, B.S., Dhar, K.L., 2017. Isolation of isoflavones from Iris kashmiriana Baker as potential anti proliferative agents targeting NF-kappaB. Phytochem. 136, 70-80. [Article]

Almeida, V.S., Bandeira, F.F., 2010. The cultural significance of use of Caatinga plants by Quilombolas of the Raso Catarina, Jeremoabo district, Bahia, Brazil. Rodriguesia. 61, 195-209. [Article]

Altmann, K.H., Gertsch, J., 2007. Anticancer drugs from nature-natural products as a unique source of new microtubule-stabilizing agents. Nat. Prod. Rep. 24, 327-357. [Article]

Alves, E.G., Vinholis, A.C., Casemiro, L.A., Furtado, N.C., Silva, M.A., Cunha, W.R., Martins, C.G., 2008. Comparative study of screening techniques for antibacterial activity evaluation of plant crude extracts and pure compounds. Quím. Nova. 31, 1224-9. [Article]

Alves, T.M.A., Silva, A.F., Brandão, M., Grandi, T.S.M., Smânia, E.F.A., Júnior, A.S. Zani, C.L., 2000. Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz. 95, 367–373. [Article]

Badisa, R.B., Darling-Reed, S.F., Joseph, P., Cooperwood, J.S., Latinwo, L.M., Goodman, C.B., 2009. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 29, 2993-2996. [Article]

Barroso, P.R., Otoni, T.J.O., Mendes, J.P.G., Machado, E.L.M., Martins, H.R., Gregório, L.E., 2017. Analysis of volatiles from aerial parts of Miconia ferruginata by HS-SPME and GC-MS. Chem. Nat. Comp. 53, 167-168. [Article]

Basholli-Salihu, M., Schuster, R., Hajdari, A., Mulla, D., Viernstein, H., Mustafa, B., Mueller, M., 2017. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp. Pharm. Biol. 55, 1553-1560. [Artcle]

Baumgratz, J.F.A., Souza, M.L.R., Carraça, D.C., Abbas, B.A., 2006. Melastomataceae in Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brazil: floristic and taxonomic aspects. Rodriguesia 57, 591–646. [Article]

Brazil. 2007. Cerrado and Pantanal – Priority areas and actions for biodiversity conservation. http://www.mma.gov.br/estruturas/chm/_arquivos/cerrado_pantanal.pdf. (accessed 04. 11. 18).

Calixto Júnior, J.T., de Morais, S.M., Gomez, C.V., Molas, C.C., Rolon, M., Boligon, A.A., Athayde, M.L., de Morais Oliveira, C.D., Tintino, S.R., Henrique Douglas, M.C., 2016. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast "Cerrado". Saudi J. Biol. Sci. 23, 434-440. [Article]

Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Ninth Edition. Document M7-A9. Wayne, USA. 32, 88 p. [Doc]

Cunha, W.R., Crevelin, E.J., Arantes, G.M., Crotti, A.E., Andrade e Silva, M.L., Furtado, N.A., Albuquerque, S., Ferreira, S., 2006. A study of the trypanocidal activity of triterpene acids isolated from Miconia species. Phytother. Res. 20, 474-478. [Article]

Cunha, W.R., de Matos, G.X., Souza, M.G., Tozatti, M.G., Andrade e Silva, M.L., Martins, C.H., da Silva, R., da Silva Filho, A.A., 2010. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives. Pharm. Biol. 48, 166-169. [Article]

Cunha, W.R., Silva, M.A., Santos, F.M., Montenegro, I.M., Oliveira, A.R.A., Tavares, H.R., Santos, H.S., Bizário, J.C., 2008. In vitro inhibition of tumor cell growth by Miconia fallax. Pharm. Biol. 46, 292–294. [Article]

da Silva Ferreira, D., Esperandim, V.R., Toldo, M.P., Kuehn, C.C., do Prado Júnior, J.C., Cunha, W.R., Silva, M.L., de Albuquerque, S., 2013. In vivo activity of ursolic and oleanolic acids during the acute phase of Trypanosoma cruzi infection. Exp. Parasitol. 134, 455-459. [Article]

de Menezes, V.J.M., Rocha, A.O., Cunha, M.S., Dutra, R.P., Godinho, J.S., de Mesquita, L.S., Ribeiro, M.S., Amaral, F.M., 2021. Chemical study of the leaves of Jacaranda decurrens Cham. Braz. J. Develop., Curitiba. 7, 22055-22070.

El-Kenawi, A., Ruffell, B., 2017. Inflammation, ROS, and mutagenesis. Canc Cell. 32, 727–729. [Article]

Farhan, M., Khan, H.Y., Oves, M., Al-Harrasi, A., Rehmani, N., Arif, H., Hadi, S.M., Ahmad, A., 2016. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygenspecies. Toxins. (Basel). 8, 37. [Article]

Filardi, L.S., Brener, Z., 1987. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 81, (5), 755-759. [Article]

Figueredo, F.G., Tintino, S.R., de Brito, D.I., Braga, M.F., Leite, N.F., Lucena, B.F.F., Souza, C.E.S., Gomez, M.C.V., Melo, H.D.C., 2014. Avaliação das potenciais atividades tripanocida e antiLeishmania do extrato de folhas de Piper arboreum (Piperaceae) e de suas frações. Rev. Ciênc. Farm. Básica Apl. 35, 149-154. [Article]

Gatis-Carrazzoni, A.S.G., Mota, F.V.B., Leite, T.C.C., Oliveira, T.B., Silva, S.C., Bastos, I.V.A., Maia, M.B.S., Pereira, P.S., Neto, P.P.M., Chagas, E.C.O., Silva, T.M.S., Nascimento, M.S., Silva, T.G., 2018. Anti-inflamatory and antinociceptive activities of the leaf methanol extract of Miconia minutiflora (Bonpl.) DC. and characterization of compounds by UPLC-DAD-QTOF-MS/MS. Naunyn Schmiedebergs Arch Pharmacol. 392, 55–68. [Article]

Gontijo, D.C., Gontijo, P.C., Brandão, G.C., Diaz, M.A.N., de Oliveira, A.B., Fietto, L.G., Leite. J.P.V., 2019. Antioxidant study indicative of antibacterial and antimutagenic activities of an ellagitannin-rich aqueous extract from the leaves of Miconia latecrenata. J Ethnopharmacol. 236, 114-123. [Article]

Howlader, N., Noone, A.M., Krapcho, M., Neyman, N., Aminou, R., Waldron, W., Altekruse, S.F., Kosary, C.L., Ruhl, J., Tatalovich, Z., Cho, H., Mariotto, A., Eisner, M.P., Lewis, D.R., Chen, H.S., Feuer, E.J., Cronin, K.A., 2012. SEER Cancer Statistics Review, 1975-2009. National Cancer Institute. Bethesda, MD. https://seer.cancer.gov/csr/1975_2009_pops09 (accessed 20. 11. 18). [Link]

Jaehde, U., Liekweg, A., Simons, S., Westfeld, M., 2008. Minimising treatment-associated risks in systemic cancer therapy. Pharm. World. Sci. 30, 161-168. [Article]

Khan, H.Y., Zubair, H., Faisal, M., Ullah, M.F., Farhan, M., Sarkar, F.H., Ahmad, A., Hadi, S.M., 2014. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ionsand reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol. Nutr. Food. Res. 58, 437-446. [Article]

Kuete, V., Mbaveng, A.T., Nono, E.C., Simo, C.C., Zeino, M., Nkengfack, A.E., Efferth, T., 2016. Cytotoxicity of seven naturally occurring phenolic compounds towards multi-factorial drug-resistant cancer cells. Phytomed. 23, 856-863. [Article]

Lee, H.M., Patel, V., Shyur, L.F., Lee, W.L., 2016. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomed. 23, 1535-1544. [Article]

Lee, V.S., Chen, C.R., Liao, Y.W., Tzen, J.T., Chang, C.I., 2008. Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides inoolong tea (Camellia sinensis). Chem. Pharm. Bull. (Tokyo). 56, 851-853. [Article]

Li, J., Guo, W.J., Yang, Q.Y., 2002, Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J. Gastroenterol. 8, 493-495. [Article]

Lima, R.C.L., Kongstad, K.T., Kato, L., Silva, M.J., Franzyk, H., Staerk, D., 2018. High-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of PTP1B inhibitors from Miconia albicans. Molecules. 23, 1–13. [Article]

Liu, S., Hou, Y., Chen, X., Gao, Y., Li, H., Sun, S., 2014. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candidaalbicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents. 43, 395-402. [Article]

Mancini, E., De Martino, L., Belisario, M.A., De Feo, V., 2008. Flavonoids of Miconia alypifolia and their antioxidant activity. Pharmacology (online). 2, 452-460 [Article]

Mann, J., 2002. Natural productsin cancer chemotherapy: past, present and future. Nat. Rev. Cancer. 2, 143-148. [Article]

Marston, A., Hostettmann, K., 2006. Developments in the application of counter-current chromatography to plant analysis. J. Chromatogr. A. 1112, 181-194. [Article]

Mfotie-Njoya, E., Munvera, A.M., Mkounga, P., Nkengfack, A.E., Mcgaw, L.J., 2017. Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts. BMC Complement. Altern. Med. 17, 199. [Article]

Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63. [Article]

Murata, Y., Kokuryo, T., Yokoyama, Y., Yamaguchi, J., Miwa, T., Shibuya, M., Yamamoto, Y., Nagino, M., 2017. The Anticancer Effects of Novel ?-Bisabolol Derivatives Against Pancreatic Cancer. Anticancer. Res. 37, 589-598. [Article]

Newman, D.J., Cragg, G.M., 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311-335. [Article]

Ortíz-Martinez, D.M., Rivas-Morales, C., Garza-Ramos, M.A., Verde-Star, M.J., Nuñez-Gonzalez, M.A., Leos-Rivas, C., 2016. Miconia sp. increases mRNA levels of PPAR gamma and inhibits alpha amylase and alpha glucosidase. Evid. Based. Complement. Alternat. Med. 2016, 5123519. [Article]

Paduch, R., Kandefer-Szersze?, M., Trytek, M., Fiedurek, J., 2007. Terpenes: substances useful in human healthcare. Arch. Immunol. Ther. Exp. (Warsz). 55, 315-327. [Article]

Pieroni, L.G., de Rezende, F.M., Ximenes, V.F., Dokkedal, A.L., 2011. Antioxidant activity and total phenols from the methanolic extract of Miconia albicans (Sw.) Triana leaves. Molecules. 16, 9439-9450. [Article]

Peixoto, J.A., Andrade e Silva, M.L., Crotti, A.E., Veneziani, C.S.R., Gimenez, V.M., Januário, A.H., Groppo, M., Magalhães, L.G., Dos Santos, F.F., Albuquerque, S., da Silva Filho, A.A., Cunha, W.R., 2011. AntiLeishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives. Molecules. 16, 1825-1833. [Article]

Queiroz, G.M., Souza, M.M., Carvalho, T.C., Cunha, W.R., Martins, C.H.G., 2011. Absence of the antibacterial activity of the crude extracts and compounds isolated from M. rubiginosa against extended-spectrum ?-lactamase producing enterobacteria. J. Pharm. Negat. Res. 2, 1-7. [Article]

Ratter, J.A., Ribeiro, J.F., Bridgewater, S., 1997. The Brazilian Cerrado Vegetation and Threats to its Biodiversity. Ann. Botany. 80, 223–230. [Article]

Rodrigues, J., Michelin, D.C., Rinaldo, D., Zocolo, G.J., dos Santos, L.C., Vilegas. W. Salgado, H.R., 2008. Antimicrobial activity of Miconia species (Melastomataceae). J. Med. Food. 11, 120-126. [Article]

Rodrigues, J., Rinaldo, D., da Silva, M.A., dos Santos, L.C., Vilegas, W., 2011. Secondary metabolites of Miconia rubiginosa. J. Med. Food. 14, 834-839. [Article]

Rodrigues, J., Rinaldo, D., dos Santos, L.C., Vilegas, W., 2007. An unusual C6-C6" linked flavonoid from Miconia cabucu (Melastomataceae). Phytochem. 68, 1781-1784. [Article]

Sarker, S.D., Nahar, L., Kumarasamy, Y., 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and itsapplication in the in vitro antibacterial screening of phytochemicals. Methods. 42, 321-324. [Article]

Schieber, M., Chandel, N.S., 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, 453–462. [Article]

Sebaugh, J.L., 2011. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10, 128-134. [Article]

Serpeloni, J.M., Reis, B.M., Rodrigues, J., dos Santos, C.L., Vilegas, W., Varanda, E.A., Dokkedal, A.L., Cólus, I.M., 2008. In vivo assessment of DNA damage and protective effects of extracts from Miconia species using the cometassay and micronucleus test. Mutagen. 23, 501-507. [Article]

Siegel, R.L., Miller, K.D., Jemal, A., 2016. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7-30. [Article]

Simon, M.F., Grether, R., Queiroz, L.P., Skema, C., Pennington, R.T., Hughes, C.E., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. U S A. 106, 20359-20364. [Article]

Szychowski, K.A., Binduga, U.E., Rybczy?ska-Tkaczyk, K., Leja, M.L., Gmi?ski, J., 2018. Cytotoxic effects of two extracts from garlic (Allium sativum L.) cultivars on the human squamous carcinoma cell line SCC-15. Saudi J. Biol. Sci. 25, 1703-1712. [Article]

Talbot, G.H., Bradley, J., Edwards, J.E., Gilbert, D., Scheld, M., Bartlett, J.G., 2006. Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42, 657-668. [Article]

Vasconcelos, M.A., Royo, V.A., Ferreira, D.S., Crotti, A.E., Andrade e Silva, M.L., Carvalho, J.C., Bastos, J.K., Cunha, W.R.Z., Naturforsch, C., 2006. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). J Biosci. 61, 477-482. [Article]

Viegas, F.P.D., Espuri, P.F., Oliver, J.C., Silva, N.C., Dias, A.L.T., Marques, M.J., Soares, M.G., 2019. Leishmanicidal and antimicrobial activity of primin and primin-containing extracts from Miconia willdenowii. Fitoterapia. 138, 104297. [Article]

World Health Organization (WHO). 2014. Global status report on noncommunicable diseases. Library Cataloguing-in-Publication Data. Geneva. [Doc]

World Health Organization (WHO) 2010. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Geneva. [Doc]

Yeoh, T.T., Tay, X.Y., Si, P., Chew, L., 2015. Drug-related problems in elderly patients with cancer receiving outpatient chemotherapy. J. Geriatr. Oncol. 6, 280-287. [Article]

Zubair, H., Azim, S., Khan, H.Y., Ullah, M.F., Wu, D., Singh, A.P., Hadi, S.M., Ahmad, A., 2016. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism. Int. J. Mol. Sci. 17, E973. [Article]




DOI: https://doi.org/10.34117/bjdv7n4-307

Refbacks

  • There are currently no refbacks.