Morphological and physiological characterization and biomass production of Burkholderia pyrrocinia (BRM 32113) / Caracterização morfológica e fisiológica e produção de biomassa de Burkholderia pyrrocinia (BRM 32113)

Authors

  • Marina Teixeira Arriel Elias Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Maythsulene Inácio de Sousa Oliveira
  • Gustavo Andrade Bezerra
  • Marcio Vinicius de Carvalho Barros Côrtes
  • Marta Cristina Corsi de Filippi

DOI:

https://doi.org/10.34117/bjdv7n4-529

Keywords:

agribusiness, bacteria, bioproduct, prospecting, waste.

Abstract

We aimed to evaluate the viability of agroindustry residues for Burkholderia pyrrocinia (BRM32113) biomass production. BRM32113 was morphological and physiologically characterized; carbon: nitrogen ratio, optimal pH and osmotic conditions were determined and carbon sources profile analyzed. Biomass production was tested with glycerol, molasses, and rice brain, and quantification was obtained by counting colony-forming unity (CFU). BRM32113 cells are bacilli shaped, and the colony is dark pink gram-negative with high capacity to assimilate carbon sources, producing 8.9E+10 CFU.mL-1 in glycerol-containing medium. Optimal C:N was from 2.5 to 3.5, pH ranged from 8.0 to 9.5, and the maximum growth was obtained in period from 6 to 8 hours. The growth rate was 0.332 h-1, and the optimal NaCl concentration was 1 and 2%. Crude glycerol as carbon source was superior. We proved that it is viable to produce biomass from agroindustry waste.

References

AGROFIT (2018) MAPA-Ministéri0 da Agricultura Pecuária e Abastecimento. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acessado em: 20 jan 2018

AGROSOFT BRASIL (2006) Efeito do tratamento térmico na conservação do farelo de arroz. Disponível em: http://www.agrosoft.org.br/?q=node/21387. Acessado em 22 jan 2018

Apolinário FDB, Pereira G F, Ferreira JP (2012) Biodiesel e Alternativas para utilização da glicerina resultante do processo de produção de biodiesel. Revista de divulgação do Proj Uni Petrobras e IF Fluminense 2: 141-146.

Baka M, Derlinden EV, Boons K,Mertens L, Impe JFV (2013) Impact of pH on the cardinal temperatures of E. coli K12: evaluation of the gamma hypothesis. Food control 9:328-335 https://doi.org/10.1016/j.foodcont.2012.04.022

Beatriz A, Araújo YJK, Lima DP (2011) Glycerol: a brief history and their application in stereoselective syntheses. Quím Nova 34: 306-319

http://dx.doi.org/10.1590/S0100-40422011000200025

Burkholder W (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

Cazetta ML, Celligoi MAPC (2005) Aproveitamento do melaço e vinhaça de cana-de-açúcar como substrato para produção de biomassa protéica e lipídica por leveduras e bactéria. Semin., Ciênc. Exatas Tecnol. 26: 105-112

http://dx.doi.org/10.5433/1679-0375.2005v26n2p105

Champe PC, Harvey RA, Ferrier DR (2009) Bioquímica ilustrada. Artmed, Porto Alegre

Chaud LCS, Arruda PV, Felipe MGA (2009) Potencial do farelo de arroz para utilização em bioprocessos. Nucleus 6: 33-46

http://10.3738/1982.2278.268

Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286

CONAB – Companhia Nacional de Abastecimento (2017) Cana-de-açúcar. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_03_23_17_00_58_conj.pdf. Acessado em: 16 jan 2018

Côrtes, ACAS, Sousa TP, Barros MV, Rodrigues FA, Silva GB, Filippi MCC (2015) Enzyme-Induced Defense Response in the Suppression of Rice Leaf Blast (Magnaporthe Oryzae) by Silicon Fertilization and Bioagents. International J of Res Studies in Biosciences 3: 22-32http://dx.doi.org/10.1590/S1982-56762013005000028

Feltrin VP, Sant'annai ES, Porto ACS, Torres RCO (2000) Produção de Lactobacillus plantarum em melaço de cana-de-açúcar. Braz Arch Biol Technol 43:1-6 http://dx.doi.org/10.1590/S1516-89132000000100015

Filippi MCC, Silva GB, Silva-lobo V, Côrtes MVCB, Moraes AJG, Prabhu AS (2011) Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Environ Sci Pollut Res Biol Control 58(2):160–166

https://doi.org/10.1016/j.biocontrol. 2011.04.016

Holmes A, Govan J, Goldstein R (1998) The agricultural use of Burkholderia(Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221–227

http://10.3201/eid0402.980209

Kitamura, DH (2013) Produção de biomassa probiótica e enriquecida com selênio de Sacharomyces boulardii utilizando melaço de cana-de-açúcar. Dissertação. Pós-Graduação em Eng. de Bioprocessos e Biotecnologia, UFP 137 p

Lee YK, Chen W, Shen H, Han D, Li Y, Jones HDT, Timlin JA and Hu Q (2013) Culturing and Analytical Measurement Techniques. In: Richmond A, HU Q (ed) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2rd edn. Oxford, UK, pp. 40-56

http://10.1002/9781118567166.ch3

Leggett M, Leland J, Kellar K, Epp B (2011) Formulation of microbial biocontrol agents – an industrial perspective. Canadian J of Plant Pathology 33: 101-107

http://10.1080/07060661.2011.563050

Lima MB,Klumb A,Andrade MR (2007) Produção de biomassa de Spirulina sp. em diferentes valores de pH e concentração de nutrientes. Salão de iniciação Científica 19: 21-26

Luderitz O, Freudenberg MA, Galanos C, Lehman V, Rietschel ETh, Weckesser J (1982). In: Razin CS, Rottern S (ed) Microbial Membrane Lipids. Academic Press, London, New York, pp 79-151

Madigan MT, Martinko, JM, Dunlap PV, Clark DP Microbiologia de Brock. Artmed, Porto Alegre

Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217

http://10.1191/1479972305cd053ra

Malekian F, Rao RM, Prinyawiwatkul W, Marshall WE, Windhauser M, Ahmedna M (2000) Lipase and lipoxygenase activity, functionality, and nutrient losses in rice bran during storage. Bulletin of the Louisiana Agric Experiment Station 870: 1-69

MAPA - Ministério da Agricultura Pecuária e Abastecimento (2015) Arroz. Disponível em: http://www.agricultura.gov.br . Acessado em: 15 dez 2017

Nascente AS, Filippi MC, Lanna AC, Souza AC, Silva-Lobo VL, Silva GB (2017) Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Envir Sci and Pollution Res, 24: 2956-2965

http://10.1007/s11356-016-8013-2

Poffo F, Silva MAC (2011) Taxonomic and physiological characterization of lactic acid bacteria isolated from seafood. Ciênc Tecnol Aliment 31: 303-307

http://dx.doi.org/10.1590/S0101-20612011000200004

Ren JH, Ye JR, Liu H, Xu LX, Wu QX (2011) Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potencial biocontrol agent. World J Microbiol Biotec 27: 2203 – 2215

https://doi.org/10.1007/s11274-011-0686-6

Rodrigues RC (2005) Condições de cultura para produção de Poli(3-HIDROXIBUTIRATO) por Ralstonia eutropha a partir de resíduos de indústrias de alimentos. Dissertação. Pós-graduação em Eng Alimentos,UFSC 100p

Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for Biological Control of Pant Diseases. Phytopathology 94: 1267-1271

http:// 10.1094/PHYTO.2004.94.11.1267

Sousa, TP, Souza ACA, Cortes MVCB, Lanna AC, Pinheiro HA, Filippi MCC, Silva GB (2017) Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0753-0

Tabosa M, Soares L, Pinto GAS (2009) Utilização do Glicerol como Fonte de Carbono em Fermentação Submersa. XVII Simpósio Nacional de Bioprocessos. Embrapa Agroindústria Tropical. 17: 1-7

Todar K (2012) Nutrition and Growth of Bacteria. Disponível em: http://textbookofbacteriology.net/nutgro.html. Acessado em: 22 jan 2018

Walter M, Marchezan E, Avila LA (2008) Rice: composition and nutritional characteristics. Ciência Rural, 38:1184-1192

http://dx.doi.org/10.1590/S0103-84782008000400049

Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia. Microbiol Immunol 36:1251–1275

http:// 10.1111/j.1348-0421.1992.tb02129.x

Published

2021-04-20

How to Cite

Elias, M. T. A., Oliveira, M. I. de S., Bezerra, G. A., Côrtes, M. V. de C. B., & de Filippi, M. C. C. (2021). Morphological and physiological characterization and biomass production of Burkholderia pyrrocinia (BRM 32113) / Caracterização morfológica e fisiológica e produção de biomassa de Burkholderia pyrrocinia (BRM 32113). Brazilian Journal of Development, 7(4), 41096–41115. https://doi.org/10.34117/bjdv7n4-529

Issue

Section

Original Papers