Larvicide activity of Bacillus thuringiensis var. israelensis. in simulated field condition/ Atividade larvicida de Bacillus thuringiensis var. israelensis. em condição simulada de campo

Authors

  • Juliete Lima Viana Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Maria dos Remédios Araújo Vieira Neta
  • Joelma Soares da Silva
  • Aylane Tamara dos Santos Andrade
  • Juliana Maria Trindade Bezerra
  • Wanderli Pedro Tadei
  • Valéria Cristina Soares Pinheiro

DOI:

https://doi.org/10.34117/bjdv7n4-676

Keywords:

Mosquito, Control, Bacterium, Biolarvicide

Abstract

Bacillus thuringiensis var. israelensis (Bti) is the active ingredient most used in biolarvicides, due to its ability to produce toxins with insecticidal action against vector mosquitoes, however the effectiveness of the toxins can be affected by climatic conditions. The present study aimed to evaluate the factors involved in the efficiency of the formulated VectoBac® WG against immature Ae. aegypti in simulated field conditions. The experiments were carried out in two types of reservoirs (12 buckets and 12 tires) with or without direct exposure to sunlight during the dry and rainy season. Climatological data were obtained from the Instituto Nacional de Meteorologia, located in Caxias-MA. Treatments and control were performed in triplicates, and the difference in larval mortality between the treated and control reservoirs was estimated using the t-Student test, at a level of 5% significance. Weekly were placed 25 larvae of the Ae. aegypti of 3rd instar in each reservoir, and every 24 hours the larval count was performed, evaluating the recycling of Bti. The biolarvicide maintained efficiency for 42 days, killing 100% of the larvae in the reservoirs protected from weather conditions, unlike the reservoirs that were unprotected, its effectiveness lasted 14 days. The experiments were completed when mortality was below 20% in all reservoirs treated with Bti. Although climatic conditions influence the activity of the VectoBac® WG larvicide, it showed that Bti has a recycling capacity for 77 days, therefore, the persistence of the bacillus in the environment shows its efficiency in controlling Ae. aegypti larvae.

References

ALVES, S. B.; LECUONA, R. E. Epizootiologia aplicada ao controle microbiano de insetos. In: ALVES, S. B. Controle microbiano de insetos. Fealq Piracicaba; v. 2, p. 97-169, 1998.

APONTE, A.; PENILLA, R. P.; RODRÍGUEZ, A. D.; OCAMPO, C. B. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop, v. 191, p. 146-154, 2019. https://doi.org/10.1016/j.actatropica. 2018.12.021

BATRA, C. P.; MITTAL, P. K.; ADAK, T. Control of Aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. israelensis formulation. J Am Mosq Control Assoc, v. 16, n. 4, p. 321-323, 2000.

BECKER, N. Bacterial control of vector-mosquitoes and black flies. In: Entomopathogenic bacteria: from laboratory to field application. Springer, Dordrecht, 2000. p. 383-398.

BECKER, N. Sterilization of Bacillus thuringiensis israelensis products by gamma radiation. J Am Mosq Control Assoc, v. 18, n. 1, p. 57-62, 2002.

BECKER, N.; ZGOMBA, M.; PETRIC, D.; BECK, M.; LUDWIG, M. Role of larval cadavers in recycling processes of Bacillus sphaericus. J Am Mosq Control Assoc, v. 11, n.3, p. 329–334, 1995.

CAMPOS, J.; ANDRADE, C. F. Susceptibilidade larval de populações de Aedes aegypti e Culex quinquefasciatus a inseticidas químicos. Rev Saúde Públ, v. 37, n. 4, p. 523-527, 2003. http://dx.doi.org/10.1590/S0034-89102003000400019

COSTA, I. M. P.; CALADO, D. C. Incidência dos casos de dengue (2007-2013) e distribuição sazonal de culicídeos (2012-2013) em Barreiras, Bahia. Epidemiol Serv Saúde, v. 25, p. 735-744, 2016. https://doi.org/10.5123/s1679-49742016000400007

DUCHET, C.; TETREAU, G.; MARIE, A.; REY, D.; BESNARD, G.; PERRIN, Y.; PARIS, M.; DAVID, J. P.; LAGNEAU, C.; DESPRÉS, L. Persistence and recycling of bioinsecticidal Bacillus thuringiensis subsp. israelensis spores in contrasting environments: evidence from field monitoring and laboratory experiments. Microb Ecol, v. 67, n. 3, p. 576-86, 2014. https://doi.org/ 10.1007/s00248-013-0360-7

FRANÇA, G. V. A. D.; PEDI, V. D.; GARCIA, M. H. D. O.; CARMO, G. M. I. D.; LEAL, M. B.; GARCIA, L. P. Síndrome congênita associada à infecção pelo vírus Zika em nascidos vivos no Brasil: descrição da distribuição dos casos notificados e confirmados em 2015-2016. Epidemiol Serv Saúde, v. 27, p. e2017473, 2018. https://doi.org/10.5123/s1679-49742018000200014

IGNOFFO, C. M.; GARCIA, C.; KROHA, M. J.; FUKADA, T.; COUCH, T. L. Laboratory tests to evaluate the potential efficacy of Bacillus thuringiensis var. israelensis for use against mosquitoes. Mosq News, v. 41, p. 85-93, 1981.

IGNOFFO, C. M.; GARCIA, C. UV-photoinactivation of cells and spores of Bacillus thuringiensis and effects of peroxidase on inactivation. Environ Entomol, v. 7, n. 2, p. 270–272, 1978. https://doi.org/10.1093/ee/7.2.270

LIMA, J. B. P.; MELO, N. V. D.; VALLE D. Persistence of Vectobac WDG and Metoprag S-2G against Aedes aegypti larvae using a semi-field bioassay in Rio de Janeiro, Brazil. Rev Inst Med Trop, v. 47, n. 1, p. 7-12, 2005. https://doi.org/10.1590/S0036-46652005000100002

LIMA, J. B. P.; ROSA-FREITAS, M. G.; RODOVALHO, C. M.; BRAGA, I. A. Field and semi-field evaluation of Bacillus thuringiensis var. israelensis versus Temephos® in Aedes aegypti control. J Health Biol Sci, v. 4, n. 2, p. 65-74, 2016. http://dx.doi.org/10.12662/2317-3076jhbs.v4i2.695.p65-74.2016

MEDRONHO, R. A.; MACRINI, L.; NOVELLINO, D. M.; LAGROTTA, M. T.; CÂMARA, V. M.; PEDREIRA, C. E. Aedes aegypti immature forms distribution according to type of breeding site. Am J Trop Med Hyg, v. 80, n. 3, p. 401-404, 2009. https://doi.org/10.4269/ajtmh.2009.80.401

MELO-SANTOS, M. A. V. D.; SANCHES, E. G.; JESUS, F. J. D.; REGIS, L. Evaluation of a new tablet formulation based on Bacillus thuringiensis sorovar. israelensis for larvicidal control of Aedes aegypti. Mem Inst Oswaldo Cruz, v. 96, n. 6, p. 859-860, 2001. http://dx.doi.org/10.1590/S0074-02762001000600020

MELO-SANTOS, M. A. V.; ARAÚJO, A. P.; RIOS, E. M. M.; REGIS, L. Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biological Control, v. 49, n 2, p. 186-191, 2009. https://doi.org/10.1016/j.biocontrol.2009.01.011

MOYES, C. L.; VONTAS, J.; MARTINS, A. J.; NG, L. C.; KOOU, S. Y.; DUSFOUR, I.; WEETMAN, D. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. v. 11, n.7, p. e0005625, 2017. https://doi.org/10.1371/journal.pntd.0005625

MYASNIK, R. M.; MANASHEROB, R.; BEN-DOV, E.; ZARITSKY, A.; MARGALITH, Y.; BARAK, Z. Comparative Sensitivity to UV-B Radiation of two Bacillus thuringiensis Subspecies and Other Bacillus sp. Curr Microbiol, v. 43, n. 2, p. 140-143, 2001. https://doi.org/10.1007/s002840010276

PÉREZ, C.; FERNANDEZ, L. E.; SUN, J.; FOLCH, J. L.; GILL, S. S.; SOBERÓN, M.; BRAVO, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci, v. 102, n. 51, p. 18303-18308, 2005. http://dx.doi.org/10.1073/pnas.0505494102

PUSZTAI, M.; FAST, P.; GRINGORTEN, L.; KAPLAN, H.; LESSARD, T.; CAREY, PR. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem J, v. 273, n. 1, p. 43-47, 1991. https://doi.org/10.1042/bj2730043

SETHA, T.; CHANTHA, N.; BENJAMIN, S.; SOCHEAT, D. Bacterial larvicide, Bacillus thuringiensis israelensis strain AM 65-52 water dispersible granule formulation impacts both dengue vector, Aedes aegypti (L.) population density and disease transmission in Cambodia. PLoS Negl Trop Dis, v. 10, n. 9, p. e0004973, 2016. http://dx.doi.org/10.1371/journal.pntd.0004973

SHANKAR, K.; PRABAKARAN, G.; MANONMANI, A. M. WDP formulations using a novel mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis/tochigiensis (VCRC B-474)–Development and storage stability. Acta Trop, v. 193, p. 58-162, 2019. http://dx.doi.org/10.1016/j.actatropica.2018.12.023

SILVA, A. S.; LOBO, K. S.; SILVA, J. S.; VALE, C. F. S.; TADEI, W. P.; PINHEIRO, V. C, S. Influencia de los factores abióticos en la efectividad de la Bacillus thuringiensis israelensis (Berliner, 1911) contra larvas de Aedes aegypti (Linnaeus, 1762). Rev Cubana Med Trop, v. 66, n. 2, p. 174-190, 2014.

SOARES-DA-SILVA, J.; QUEIRÓS, S. G.; AGUIAR, J. S.; VIANA, J. L.; NETA, M. D. R. A. V.; SILVA, M. C.; PINHEIRO, V. C. S.; POLANCZYK, R. A.; CARVALHO-ZILSE, G. A.; TADEI, W. P. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Trop, v. 176, p. 97-205, 2017. https://doi.org/10.1016/j.actatropica.2017.08.006

SOBERÓN, M.; MONNERAT, R.; BRAVO, A. MODE of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. In: GOPALAKRISHNAKONE, P. B.; STILES, A.; ALAPE-GIRÓN, J. D.; DUBREUIL, M. Mandal. Microbial Toxins. Toxinology. Springer Netherlands, Dordrecht, the Netherlands, p. 1-13, 2016.

STOLERMAN, L. M.; MAIA, P. D.; KUTZ, J. N. Forecasting dengue fever in Brazil: An assessment of climate conditions. PloS one, v. 14, n. 8, p. e0220106, 2019. https://doi.org/10.1371/journal.pone.0220106

TAMILSELVAN, S.; MANONMANI, A. M.; JAMBULINGAM, P. Fly ash-based water dispersible powder formulation of Bacillus thuringiensis var. israelensis: Development & laboratory evaluation against mosquito immatures. Indian J Med Res, v. 146, n. 6, p. 714, 2017. http://dx.doi.org/10.4103/ijmr.IJMR_651_15

VIANA, J. L.; SOARES-DA-SILVA, J.; VIEIRA-NETA, M. R. A.; TADEI, W. P.; OLIVEIRA, C. D.; ABDALLA, F. C.; PINHEIRO, V. C. S. Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). Braz J Biol, v. 81, n. 1, p. 114-124, 2021. http://dx.doi.org/10.1590/1519-6984.223389

VILARINHOS, P.; DIAS, D. G. S.; MONNERAT, R. G. Persistência larvicida de formulações de Bacillus thuringiensis subsp. israelensis para o controle de larvas de Aedes aegypti. Embrapa Recursos Genéticos e Biotecnologia-Boletim de Pesquisa e Desenvolvimento. (INFOTECA-E); 2003.

ZARA, A. L. D. S. A.; SANTOS, S. M. D.; FERNANDES-OLIVEIRA, E. S.; CARVALHO, R. G.; COELHO, G. E. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol Serv Saúde, v. 25, p. 391-404, 2016. https://doi.org/10.5123/s1679-49742016000200017

ZHANG, L.; ZHANG, X.; ZHANG, Y.; WU, S.; GELBI?, I.; XU, L.; GUAN, X. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Rep, v. 6, n. 1, p. 1-8, 2016. http://dx.doi.org/10.1038/srep39425

Published

2021-04-29

How to Cite

Viana, J. L., Neta, M. dos R. A. V., da Silva, J. S., Andrade, A. T. dos S., Bezerra, J. M. T., Tadei, W. P., & Pinheiro, V. C. S. (2021). Larvicide activity of Bacillus thuringiensis var. israelensis. in simulated field condition/ Atividade larvicida de Bacillus thuringiensis var. israelensis. em condição simulada de campo. Brazilian Journal of Development, 7(4), 43248–43264. https://doi.org/10.34117/bjdv7n4-676

Issue

Section

Original Papers