Accessible technologies for kinetic and kinematic analysis of people with disabilities: a literature review/ Tecnologias acessíveis para análise cinética e cinemática da pessoa com deficiência: uma revisão da literatura

Authors

  • Jordana S. R. Martins
  • Ivo Z. L Meyer
  • Diego H. A. Nascimento
  • Isabella S. D. Menin
  • George Sabino
  • Welbert L Vieira
  • Nathália A. Gomes
  • Claysson, B. S Vimieiro

DOI:

https://doi.org/10.34117/bjdv7n5-057

Keywords:

instrumented treadmill, rehabilitation, stroke, human gait.

Abstract

Locomotion is the process by which a being moves from one place to another, including stopping, changing speed, changes in direction and adaptation to changes in terrain. Human walking follows a pattern, and it is one of the forms of locomotion that most calls the attention of researchers. Its variation among a group may indicate pathological conditions that influence the treatment and rehabilitation of patients with low mobility. The objective of this article is to carry out a review for the development of a low-cost instrumented treadmill that can assist in the rehabilitation, treatment and follow-up of patients with stroke, and for that, a search of articles related to the topic was carried out in databases such as ScienceDirect, PubMed and others. The results obtained were satisfactory and enabled the creation of a good database. It was possible to conclude that there is a diversity of existing resources and that it is up to the professionals to direct their choice to the one that suits them best.

References

ADACHI, W.; TSUJIUCHI, N.; KOIZUMI, T.; SHIOJIMA, K.; TSUCHIYA, Y.; INOUE, Y. (2012). Development of walking analysis system using by motion sensor with mobile force plate. Journal of System Desicom and Dynamics, 6(5), 655-664.

ALBERT, J. A.; OWOLABI, V.; GEBEL, A.; BRAHMS, C. M.; GRANACHER, U.; ARNRICH, B. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study. Sensors, 20(18), 5104, 2020.

ALBUQUERQUE, C. A.; BESSA, Y. S. Desenvolvimento de uma plataforma de força para o estudo do equilíbrio humano. Monograph (Bachelor of Electronic Engineering) University of Brasilia, Brasília, 2015.

ARAUJO, P. D. A. Analisando técnicas de captura de movimento, Universidade Federal Fluminense, Niterói -RJ, 2015.

BARELA, A. Utilização da plataforma de força para aquisição de dados cinéticos durante a marcha humana. Brazilian Journal of Motor Behavior, v. 6, p. 56–61, 2011.

BORENSTEIN, G.; ODEWAHN, A.; JEPSON, B. Making things see: 3D vison with Kinect, Processing, Arduino, and MakerBot. O’Reilly Media, 2012.

BONNECHERE, B.; JANSEN, B.; SALVIA, P.; BOUZAHOUENE, H.; OMELINA, L.;MOISEEV, F.; SHOLUKHA, V.; CORNELIS, J.; ROOZE, M.; JAN, S. V. S. Validity and reliability of the kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait & posture, Elsevier, v. 39, n. 1, p. 593–598, 2014.

CALDAS, R.; MUNDT, M.; POTTHAST, W.; NETO, F. B. de L.; MARKERT, B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait &posture, Elsevier, v. 57, p. 204–210, 2017.

CAO, Y.; LI, B. ; LI, Q ; XIE, J. ; CAO, B. ; YU, S. Kinect?based gait analyses of patients with Parkinson's disease, patients with stroke with hemiplegia, and healthy adults. Neuroscience & Therapeutics, May 2017, Vol.23(5), pp.447-449

CLARK, R. A.; MENTIPLAY, B. F.; HOUGH, E.; PUA, Y. H. Three-dimensional camerasand skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and kinect alternatives. Gait & posture, Elsevier, v. 68, p. 193–200, 2019.

DUARTE, C. T.; ROQUETTE, P. C. C.; DURÃO, C.R.C.; LIMA, K. G.; OLIVEIRA, R. L. Multiple Linear Regression Method Applied in Calibration of Inertial Sensors. Brazilian Journal of Development. Curitiba, v. 6, n.10, p. 75363-75371, oct. 2020

DUBOIS, A.; BRESCIANI, J.-P. Validation of an ambient system for the measurement of gait parameters. Journal of biomechanics, Elsevier, v. 69, p. 175–180, 2018.

ELTOUKHY, M.; KUENZE, C.; OH, J.; JACOPETTI, M.; WOOTEN, S.; SIGNORILE, J. Microsoft kinect can distinguish differences in over-ground gait between older persons withand without parkinson’s disease. Medical engineering & physics, Elsevier, v. 44, p. 1–7, 2017.

EDGINTON, K. A.; GÜLER, H. C.; OBER, J. J.; BERME, N. Instrumented Treadmills: Reducing the need for gait labs. CMBES Proceedings, v. 30, 2007.

FORNER-CORDERO, A.; KOOPMAN, H.; HELM, F. Van der. Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait &posture, Elsevier, v. 23, n. 2, p. 189–199, 2006.

FREEDMAN, B.; SHPUNT, A.; MACHLINE, M.; ARIELI, Y. Depth mapping using projected patterns. Google Patents, 2012.

HONG, C.-Y.; GUO, L.-Y.; SONG, R.; NAGURKA, M. L.; SUNG, J.-L.; YEN, C.-W. Developing a low-cost force treadmill via dynamic modeling. Journal of healthcare engineering, Hindawi, v. 2017, 2017.

KHOSHELHAM, K.; ELBERINK, S. O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, v. 12, n. 2, p. 1437-1454, 2012.

KOZLOW, P.; ABID, N.; YANUSHKEVICH, S. Gait type analysis using dynamic bayesian networks. Sensors, Multidisciplinary Digital Publishing Institute, v. 18, n. 10, p. 3329, 2018.

LATORRE, J.; LLORENS, R.; COLOMER, C.; ALCAÑIZ, M. Reliability and comparison of kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of biomechanics, Elsevier, v. 72, p. 268–273, 2018.

LIU, T.; INOUE Y.; SHIBATA, K.; SHIOJIMA, K. A Mobile Force Plate and Three-Dimensional Motion Analysis System for Three-Dimensional Gait Assement. IEEE Sensor Journal, v. 12, 1461, 2012.

MIZRAHI, J.; SUSAK, Z.; HELLER, L.; NAJENSON, T. Variation of time distance parameters of the stride as related to clinical gait improvement in hemiplegics. Scandinavian Journal Rehabilitation Medical, v. 14, p. 133-140, 1982.

MÜLLER, B.; ILG, W.; GIESE, M. A.; LUDOLPH, N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PloS one, Public Library of Science, v. 12, n. 4, p.e0175813, 2017.

PFISTER, A., WEST, A. M.; BRONNER, S.; NOAH, J. A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal Medical Engineering Technology, 2014; 38(5): 274–280

PINHEIRO, A. P.; SANTOS, S. S.; PEREIRA, A. A.; ANDRADE, A. O. Sistema óptico-eletrônico para reconstrução tridimensional do movimento humano e quantificação de sua cinemática articular. Revista Brasileira de Biomecânica, v. 14, n. 27, 2013.

QUADROS, E. A. R.; GIACOMOLLI, A. A. Proposal for an optoelectronic sensor for gait analysis. Brazilian Journal of Development. Curitiba, v. 6, n. 5, p. 30698-30719, may. 2020.

RILEY, P. O.; DICHARRY, J.; FRANZ, J.; CROCE, U. D.; WILDER, R. P.; KERRIGAN D. C. A Kinematics and Kinetic Comparison of Over ground and Treadmill Running. Official Journal of the American College of Sports Medicine, p. 1093 -1100, 2013.

RODOWANSKI, I. J. Plataforma de foça instrumentada: uma ferramenta aplicada a estudos de posturologia. Master's Dissertation, Federal University of Bahia, Salvador, 2011.

SABATINI, A. M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering, v. 53, p. 1346-1356, 2006.

SLOOT, L. H.; HOUDIJK, H.; HARLAAR, J. A comprehensive protocol to test instrumented treadmills. Medical engineering & physics, v. 37, n. 6, p. 610-616, 2015.WATT, J. R., FRANZ, J. R., JACKSON, K., DICHARRY, J., RILEY, P. O.,and KERRIGAN, D. C. (2010). A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. WILLEMS, P. A.; GOSSEYE, T. P. Does an instrumented treadmill correctly measure the ground reaction forces? Biology Open 2, 1421-1424, 2013.

WU, G.; VAN DER HELM, F. C.; VEEGER, H. D.; MAKHSOUS, M.; et.al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of biomechanics, 38(5), 981-992, 2005.

WU, G.; SIEGLER, S.; ALLARD, P.; KIRTLEY, C.; LEARDINI, A.; ROSENBAUM, D.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of biomechanics, 35(4), 543-548, 2002.

ZOHAR, et al. Method for real time interactive visualization of muscle forces and joint torques in the human body. US 7, 931, 604 B2. USA, 2011. Google Patents

Downloads

Published

2021-06-07

How to Cite

Martins, J. S. R., Meyer, I. Z. L., Nascimento, D. H. A., Menin, I. S. D., Sabino, G., Vieira, W. L., Gomes, N. A., & Vimieiro, C. B. S. (2021). Accessible technologies for kinetic and kinematic analysis of people with disabilities: a literature review/ Tecnologias acessíveis para análise cinética e cinemática da pessoa com deficiência: uma revisão da literatura. Brazilian Journal of Development, 7(5), 44529–44541. https://doi.org/10.34117/bjdv7n5-057

Issue

Section

Original Papers