Análise térmica e estrutural de filmes de amido/PAADDA/argila / Thermal and structural analysis of starch/PAADDA/clay films

Júlia Cândido Magalhães, Vanessa Roberta Rodrigues da Cunha, Jorge Amim Júnior, Ana Lucia Shiguihara

Abstract


Neste trabalho, filmes de amido de batata/poli (acrilamida-co-dialildimetilamônio)/argila, AM/PAADDA/MMT, foram preparados pelo método da evaporação do solvente. Os filmes foram caracterizados por espectroscopia na região do infravermelho (ATR-FTIR), difratometria de raios X (DRX), análise termogravimétrica (TGA) e por experimentos de absorção de vapor de água. O efeito da concentração da argila (MMT) sobre a morfologia, estabilidade térmica e a absorção de vapor de água dos filmes de AM/PAADDA foi investigado. Os espectros de ATR-FTIR indicaram a formação de novas ligações de hidrogênio entre o MMT e os polímeros. Os resultados de DRX mostraram que filmes de AM/PAADDA com 3 e 5% (m/m) de MMT formaram nanocompósitos esfoliados. Entretanto, o filme de AM/PAADDA com 7% (m/m) de MMT apresentou uma estrutura de microcompósito. As curvas TGA mostraram que os filmes de AM/PAADDA/MMT preparados com 3, 5 e 7% (m/m) de MMT apresentaram maior estabilidade térmica do que o filme de AM/PAADDA. Experimentos de absorção de umidade revelaram que o filme AM/PAADDA com 5% (m/m) de MMT apresentou a menor absorção de umidade entre os filmes preparados. Portanto, os resultados obtidos mostraram que a MMT pode ser utilizada para melhorar a estabilidade térmica e o teor de umidade do filme AM/PAADDA.

 

 


Keywords


amido, argila, PAADDA.

References


BASHIR, K.; AGGARWAL, M. Physicochemical, structural and functional properties of native and irradiated starch: a review, Journal of Food Science and Technology, v. 56(2), p. 513-523,2019.

ZOLEK-TRYZNOWSKA, Z.; KALUZA, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance, Materials, v.14, p. 1-14, 2021.

SHI, R.; LIU, Q.; DING, T.; HAN, Y.; ZHANG, L.; CHEN, D.; TIAN, W. Ageing of Soft Thermoplastic Starch with High Glycerol Content, Journal of Applied Polymer Science, v. 103, p. 574–586, 2007.

LIU, C.; YU, B.; TAO, H.; LIU, P.; ZHAO, H.; TAN, C.; CUI, B. Effects of soy protein isolate on mechanical and hydrophobic properties of oxidized corn starch film, Food Science and Technology, v. 147, p. 1-11, 2021.

REN, L.; YAN, X.; ZHOU, J.; TONG, J.; SU, T. Influence of chitosan concentration on mechanical and barrierproperties of corn starch/chitosan films. International Journal of Biological Macromolecules, v.105, p.1636–1643, 2017.

WU, Z.; WU, J.; PENG, T.; Li, Y.; LIN, D.; XING, B.; LI, C.; YANG, Y.; YANG, L.; ZHANG, L.; MA, R.; WU, W.; LV, X.; DAI, J.; HAN, G. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films, Polymers, v.9, p.1-19, 2017.

KOH, J.J.; ZHANG, X.; HE, C. Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies, International Journal of Biological Macromolecules, v. 109, p. 99-113,2018.

LU, S.; LIN, S.; YAO, K. Study on the Synthesis and Application of Starch-graft-Poly(AM-co-DADMAC) by Using a Complex Initiation System of CS-KPS. Starch, v. 56, 138-143, 2004.

JORDAN, J.; JACOB, K.I.; TANNENBAUM, R.; SHARAF, M.A.; JASIUK, I.; Experimental trends in polymer nanocomposites—a review,

Materials Science and Engineering: A, v. 393, p. 1-11, 2005.

ZENG, Q.H.; YU, A.B.; LU, G.Q.; PAUL, D.R. Clay-based polymer nanocomposites: research and commercial development, Journal of Nanoscience and Nanotechnology, v.5 , p.1574-1592, 2005.

RAY, S.S.; OKAMOTO, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing, Progress in Polymer Science, v. 28, p. 1539-1641, 2003.

MAURICIO, M. R.; DA COSTA, P.G.; HARAGUCHI, S.K.; GUILHERME, M.R.; MUNIZ, E.C.; RUBIRA, A.F. Synthesis of a microhydrogel composite from cellulose nanowhiskersand starch for drug delivery, Carbohydrate Polymers, v. 22, p. 715-722, 2015.

CHEN, Y.; GUO, Z.; DAS, R.; JIANG, Q. Starch-based Carbon Nanotubes and Graphene: Preparation, Properties and Applications, ES Food & Agroforesty, v.2, p. 13-21, 2020.

MADHUMITA, G.; FOWSIYA, J.; ROOPAN, S.M.; THAKUR, V.K. Recent advances in starch–clay nanocomposites, International Journal of Polymer Analysis and Characterization, v.23, p.331-345, 2018.

CARRETERU, M.I. Clay minerals and their beneficial effects upon human health. A review, Applied Clay Science, v. 21, p.155-163,2002.

LÓPEZ-GALINDO,A.; VISERAS, C.; CEREZO, P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products, Applied Clay Science, v. 36, p.51-63, 2007.

KOTAL, M.; BHOWMICK, A.K. Polymer nanocomposites from modified clays: Recentadvances and challenges, Progress in Polymer Science, v.51, p. 127-187, 2015.

FU, S.; SUN, Z.; HUANG, P.; LI, Y.; HU, N. Some basic aspects of polymer nanocomposites: A critical review, Nano Materials Science, v. 1, p. 2-30, 2019.

MONDAL, D.; BHOWMICK, B.; MOLLICK, Md.M.R.; MAITY, D.; MUKHOPADHYAY, A.; RANA, D.; CHATTOPADHYAY, D. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films, Carbohydrate Polymers, v.96, p. 57-63, 2013.

AHMAD, M.; GANIL, A.; HASSAN, I.; HUANG, Q.; SHABBIR, H. Production and characterization of starch nanoparticles by mild álcali hydrolysis and ultra-sonication

process, Scientific Reports, v. 10, p. 1-11, 2020.

YANG, K.; CHEN, J.; FU, Q.; DUN, X.; YAO, C., Preparation of novel amphoteric polyacrylamide and its synergistic retention with cationic polymers, e-Polymers, v.20, p.162–170, 2020.

AFACAM, C.; NARAIN, R.; SOARES, J.B.P., Flocculating and dewatering of kaolin suspensions with different forms of poly(acrylamide-co-diallyl dimethylammonium chloride), Canadian Journal of Chemical Engineering, v. 99, p. 1-13, 2021.

ZHANG, H.; GAO, X.; CHEN, K.; Li, H.; PENG, L., Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN, Carbohydrate Polymers, v. 181, p.450–459, 2018.

ENG, C.C.; IBRAHIM, N.A.; ZAINUDDIN, N.; ARIFFIN, H.; YUNUS, W. Md. Z.W.; THEN, Y.Y.; TEH, C.C. Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay, Indian Journal of Materials Science, v.2013, p. 1-11, 2013.

ALI, S.S.; TANG, X.; ALAVI, S.; FAUBION, J. Structure and Physical Properties of Starch/Poly Vinyl Alcohol/Sodium Montmorillonite Nanocomposite Films, Journal of Agricultural and Food Chemistry, v.59, p. 12384-12395, 2011.

RODRIGUES, S.C.S.; DA SILVA, A.S.; CARVALHO, L.H.; ALVES, T.S.; BARBOSA, R. Morphological, structural, thermal properties of a native starch obtained from babassu mesocarp for food packaging application, Journal of Materials Research and Technology, v. 9(6), p. 15670-15678, 2020.

ZHANG, H.; GAO, X.; CHEN, K.; Li, H.; PENG, L., Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN, Carbohydrate Polymers, v. 181, p.450–459, 2018.

SADHU, S.D.; SONI, A.; GARG, M. Thermal Studies of the Starch and Polyvinyl Alcohol based Film and its Nano Composites, Nanomedicine & Nanotechnology, v. 6, p.1-5, 2015.




DOI: https://doi.org/10.34117/bjdv7n10-213

Refbacks

  • There are currently no refbacks.