Academic analytics como apoio ao sucesso na graduação: uma revisão sistemática da literatura / Academic analytics to support undergraduate success: a systematic review of the literature

Jorge Lopes de Mesquita, Reudismam Rolim de Sousa, Samara Martins Nascimento, Thatyara Freire de Souza

Abstract


A análise de dados é uma atividade essencial em diversas áreas do conhecimento. Em especial, na área de educação, também denominada academic analytics, pode-se utilizar dados acadêmicos para verificar o perfil dos estudantes e propor estratégias que determinem diferentes fatores, como o sucesso na graduação, a probabilidade de evasão/retenção ou a predição da nota do estudante em avaliações específicas. Buscando entender as diferentes estratégias  de análise de dados utilizadas na validação de técnicas com tipos de dados acadêmicos, este trabalho está sendo proposto. A pesquisa realizada trata-se de uma revisão sistemática da literatura, que contou com um conjunto de passos para ser validada. Inicialmente, foi realizada uma busca em bases de dados, acerca de trabalhos relacionados à área pretendida. Um total de 78 trabalhos foram obtidos. Destes, 18 deles foram aprovados para extração dos dados, considerando critérios de inclusão e exclusão. Dos trabalhos elencados para responder às questões de pesquisa, identificou-se que a principal característica investigada está relacionada com o sucesso dos estudantes na graduação.


Keywords


Academic Analytics, Educação, Graduação.

References


AJOODHA, Ritesh; JADHAV, Ashwini e DUKHAN, Shalini. Forecasting Learner Attrition for Student Success at a South African University. In Conference of the South African Institute of Computer Scientists and Information Technologists 2020 (SAICSIT '20). Association for Computing Machinery, New York, NY, USA, 19–28. 2020.

BASAVARAJ, Prateek; BADILLO-URQUIOLA, Karla; GARIBAY, Ivan e WISNIEWSKI, Pamela J. A Tale of Two Majors: When Information Technology is Embedded within a Department of Computer Science. In Proceedings of the 19th Annual SIG Conference on Information Technology Education (SIGITE '18). Association for Computing Machinery, New York, NY, USA, 32–37. 2018a.

BASAVARAJ, Prateek e GARIBAY, Ivan. A Personalized "Course Navigator" Based on Students' Goal Orientation. In Proceedings of the 2018 ACM Conference on Supporting Groupwork. Association for Computing Machinery, New York, NY, USA, 98–101. 2018b.

BASAVARAJ, Prateek e GARIBAY, Ivan. Enhancing the Program Quality and College-Level Success Metrics of an IT Program at a Large Public University. In Proceedings of the 20th Annual SIG Conference on Information Technology Education (SIGITE '19). Association for Computing Machinery, New York, NY, USA, 16–21. 2019.

CAMPBELL, Patricia F. e MCCABE, George P. Predicting the success of freshmen in a computer science major. Communication of ACM 27, 11 (Nov. 1984), 1108–1113. 1984.

COMPUTERWORLD. 2021. Dados: o fundamento da transformação digital. Disponível em: . Acesso em: 11 de ago. de 2021.

DAUD, Ali; ALJOHANI, Naif Radi; ABBASI, Rabeeh Ayaz; LYTRAS, Miltiadis D.; ABBAS, Farhat e ALOWIBDI, Jalal S.. Predicting Student Performance using Advanced Learning Analytics. In Proceedings of the 26th International Conference on World Wide Web Companion (WWW '17 Companion). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 415–421.2017.

GOOLD, Annagret e RIMMER, Russell. 2000. Factors affecting performance in first-year computing. SIGCSE Bull. 32, 2 (June 2000), 39–43.

MAKAROVA, S.; MARTYNOV, V. e ZAITSEVA, A. Problems and Methods for Forming Educational Results in the Implementation of Engineering Education in the Digital Economy. In Proceedings of the V International Conference on Information Technologies in Engineering Education (Inforino), pp. 1-5. 2020.

MOODLEY, P. e SINGH, Rachael Jesika. Addressing student dropout rates at South African universities. 2015.

MORSE, C. D. Visualization of Student Cohort Data With Sankey Diagrams via Web-Centric Technologies. 2014.

MUOLLO, K; BASAVARAJ, P. e GARIBAY, I. Understanding Students’ Online Reviews to Improve College Experience and Graduation Rates of STEM Programs at the Largest Post-Secondary Institution: A Learner-Centered Study. In Proceedings of the IEEE Frontiers in Education Conference (FIE), 2018, pp. 1-7. 2018.

PHILIPPOU, N.; AJOODHA, R. E JADHAV, A. Using Machine Learning Techniques and Matric Grades to Predict the Success of First Year University Students. In Proceedings of the 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC), 2020, pp. 1-5. 2020.

SAMPAIO, R.F; MANCINI, M.C. Estudos de revisão sistemática: Um guia para síntese criteriosa da evidência científica. Rev. bras. fisioter., São Carlos, v. 11, n. 1, p. 83-89, jan./fev. 2007.

SMART, J; FELDMAN, K e ETHINGTON, C., Holland's theory and patterns of college student success. In Commissioned report for the national symposium on postsecondary success: Spearheading a dialogue on student success. Washington DC: The National Postsecondary Education Cooperative. 2006.

SUPERBY, Juan-Francisco; MESKENS, N. e VANDAMME, Jean-Philippe. Determination of factors influencing the achievement of the first-year university students using data mining methods. 2006.

TSIAKMAKI, M.; KOSTOPOULOS, G. e KOUTSONIKOS, G.; PIERRAKEAS, C.; KOTSIANTIS, S. e RAGOS, O. Predicting University Students' Grades Based on Previous Academic Achievements. In proceedings of the 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA), 2018, pp. 1-6. 2018.

TYSON, Will; LEE, Reginald S.; BORMAN, K. e HANSON, M. Science, Technology, Engineering, and Mathematics (STEM) Pathways: High School Science and Math Coursework and Postsecondary Degree Attainment. Journal of Education for Students Placed at Risk (JESPAR) 12 (2007): 243 - 270.

WIGDAHL, J.; HEILEMAN, G.; SLIM, A. e ABDALLAH, C. Curricular Efficiency: What Role Does It Play in Student Success?. 2014.




DOI: https://doi.org/10.34117/bjdv7n10-345

Refbacks

  • There are currently no refbacks.