Evaluation of color removal efficiencies and kinetic parameters of Fenton (H2O2/Fe2+) and photo-Fenton (H2O2/Fe2+/UV) processes in the treatment of a textile wastewater containing indigo blue / Avaliação da eficiência de remoção de cor e parâmetros cinéticos dos processos de Fenton (H2O2/Fe2+) e foto-Fenton (H2O2/Fe2+/UV) no tratamento de um efluente têxtil contendo corante azul índigo

Jean Cesar Benassi, Annie Alexandra Cerón Sánchez, Silgia Aparecida da Costa, Sirlene Maria da Costa


The textile industry uses Indigo blue dye extensively in the production of jeans. Thus, high volumes of wastewater containing dye are obtained and must be treated before being discharged. The color removal efficiencies of indigo blue dye synthetic wastewater after treatment by Advanced Oxidative Processes (AOPs) using Fenton (H2O2/Fe2+) and photo-Fenton (H2O2/Fe2+/UV) was evaluated in this work. The experiments were conducted at pH 2.8 and evaluated the influence of the amount of [H2O2]/[Fe2+], the use of sulfuric acid and citric acid to adjust the pH, the initial concentration of the indigo dye, and the dosage form of H2O2 - the kinetic parameters and BMG model were also evaluated. The use of sulfuric acid to adjust the pH was more efficient in removing the color. The highest color removal rates were 70.78 ± 2.96 % after 180 min and 64.22 ± 2.08 % after 60 min, respectively, for the Fenton and photo-Fenton processes (both with a single dose of reagents) and 79.76 ± 1.45 % after 300 min and 80.43 ± 1.27% after 180 min, respectively, for Fenton and photo-Fenton with the gradual addition of H2O2. The indigo dye degradation reactions are better suited to the BMG kinetic model.


Indigo blue dye, Textile wastewater, Advanced Oxidative Processes,Fenton process, Color removal.


Amaral, M. C. S. et al. (2014) ‘Evaluation of operational parameters from a microfiltration system for indigo blue dye recovery from textile dye effluent’, Desalination and Water Treatment, 52(1–3), pp. 257–266. doi: 10.1080/19443994.2013.793618.

Ameta, R. et al. (2018) Fenton and Photo-Fenton Processes, Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. doi: 10.1016/B978-0-12-810499-6.00003-6.

Baba, Y. et al. (2015) ‘Hydroxyl radical generation in the photo-fenton process: Effects of carboxylic acids on iron redox cycling’, Chemical Engineering Journal. Elsevier B.V., 277, pp. 229–241. doi: 10.1016/j.cej.2015.04.103.

Babuponnusami, A. and Muthukumar, K. (2014) ‘A review on Fenton and improvements to the Fenton process for wastewater treatment’, Journal of Environmental Chemical Engineering. Elsevier Ltd, 2(1), pp. 557–572. doi: 10.1016/j.jece.2013.10.011.

Behnajady, M. A., Modirshahla, N. and Ghanbary, F. (2007) ‘A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process’, Journal of Hazardous Materials, 148(1–2), pp. 98–102. doi: 10.1016/j.jhazmat.2007.02.003.

Chan, K. H. and Chu, W. (2003) ‘Modeling the reaction kinetics of Fenton’s process on the removal of atrazine’, Chemosphere, 51(4), pp. 305–311. doi: 10.1016/S0045-6535(02)00812-3.

Chowdhury, M. F. et al. (2020) ‘Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review’, Journal of Molecular Liquids. Elsevier B.V., 318, p. 114061. doi: 10.1016/j.molliq.2020.114061.

Dojčinović, B. P. et al. (2011) ‘Decolorization of reactive textile dyes using water falling film dielectric barrier discharge’, Journal of Hazardous Materials, 192(2), pp. 763–771. doi: 10.1016/j.jhazmat.2011.05.086.

Ebrahiem, E. E., Al-Maghrabi, M. N. and Mobarki, A. R. (2017) ‘Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology’, Arabian Journal of Chemistry. King Saud University, 10, pp. S1674–S1679. doi: 10.1016/j.arabjc.2013.06.012.

Garcia, B. (2015) Reduced water washing of denim garments, Denim: Manufacture, Finishing and Applications. Elsevier Ltd. doi: 10.1016/B978-0-85709-843-6.00013-5.

Garcia, L. F. et al. (2017) ‘Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support’, Chemosphere, 186, pp. 519–526. doi: 10.1016/j.chemosphere.2017.08.033.

Ghazi Mokri, H. S. et al. (2015) ‘Adsorption of C.I. Acid Red 97 dye from aqueous solution onto walnut shell: kinetics, thermodynamics parameters, isotherms’, International Journal of Environmental Science and Technology, 12(4), pp. 1401–1408. doi: 10.1007/s13762-014-0725-6.

Hafezi, M. et al. (2020) ‘Application of impinging jet atomization in UV/H2O2 reactor operation: Design, evaluation, and optimization’, Journal of Photochemistry and Photobiology A: Chemistry, 389(June 2019). doi: 10.1016/j.jphotochem.2019.112198.

Hendaoui, K. et al. (2018) ‘Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: Study and optimization using Response Surface Methodology’, Process Safety and Environmental Protection. Institution of Chemical Engineers, 116, pp. 578–589. doi: 10.1016/j.psep.2018.03.007.

Huang, T. et al. (2018) ‘Fe0-H2O2 for advanced treatment of citric acid wastewater: Detailed study of catalyst after several times use’, Chemical Engineering Journal. Elsevier, 336(August 2017), pp. 233–240. doi: 10.1016/j.cej.2017.11.147.

Kalra, A. and Gupta, A. (2019) ‘Recent advances in decolourization of dyes using iron nanoparticles: A mini review’, Materials Today: Proceedings. Elsevier Ltd., 36, pp. 689–696. doi: 10.1016/j.matpr.2020.04.677.

Katheresan, V., Kansedo, J. and Lau, S. Y. (2018) ‘Efficiency of various recent wastewater dye removal methods: A review’, Journal of Environmental Chemical Engineering, 6(4), pp. 4676–4697. doi: 10.1016/j.jece.2018.06.060.

Khatri, I., Singh, S. and Garg, A. (2018) ‘Performance of electro-Fenton process for phenol removal using Iron electrodes and activated carbon’, Journal of Environmental Chemical Engineering. Elsevier, 6(6), pp. 7368–7376. doi: 10.1016/j.jece.2018.08.022.

Kumar, V., Singh, K. and Shah, M. . (2021) ‘Advanced oxidation processes for complex wastewater treatment’, in Shah, M. . (ed.) Advanced Oxidation Processes for Effluent Treatment Plants. Cambridge, pp. 1–31.

Lima, J. P. P. et al. (2021) ‘Kinetic Evaluation of Bismarck Brown Y Azo Dye Oxidation by Fenton Processes in the Presence of Aromatic Mediators’, Water, Air, and Soil Pollution. Springer International Publishing, 232(8). doi: 10.1007/s11270-021-05258-1.

Mahakulkar, S. et al. (2019) ‘Advanced Oxidative Degradation of Indigo Caramine’, International Journal of Innovations in Engineering and Science, 4(8), pp. 225–228.

Mahtab, M. S., Farooqi, I. H. and Khursheed, A. (2021) ‘Sustainable approaches to the Fenton process for wastewater treatment: A review’, Materials Today: Proceedings. Elsevier Ltd, (xxxx). doi: 10.1016/j.matpr.2021.04.215.

Meksi, N. and Mhenni, M. F. (2015) Indigo dyeing technology for denim yarns, Denim: Manufacture, Finishing and Applications. Elsevier Ltd. doi: 10.1016/B978-0-85709-843-6.00004-4.

Miller, C. J., Wadley, S. and Waite, T. D. (2017) ‘Fenton, photo-Fenton and Fenton-like processes’, Water Intelligence Online, 16, pp. 297–332. doi: 10.2166/9781780407197_0297.

Mirzaei, A. et al. (2017) ‘Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – A review’, Chemosphere. Elsevier Ltd, 174, pp. 665–688. doi: 10.1016/j.chemosphere.2017.02.019.

Mishra, N. et al. (2017) ‘A Review on Advanced Oxidation Processes for Effective Water Treatment’, Current World Environment, 12(3), pp. 469–489. doi: 10.12944/CWE.12.3.02.

Nature (2021) In the jeans: an environmentally friendly way to dye denim could usher in a long-overdue new fashion. Available at: https://media.nature.com/original/magazine-assets/d41586-018-00103-8/d41586-018-00103-8.pdf (Accessed: 21 July 2021).

Nicodemos Ramos, M. D., Sousa, L. A. and Aguiar, A. (2020) ‘Effect of cysteine using Fenton processes on decolorizing different dyes: a kinetic study’, Environmental Technology (United Kingdom). Taylor & Francis, 0(0), pp. 1–13. doi: 10.1080/09593330.2020.1776402.

Ou, X. et al. (2013) ‘Degradation of methyl violet by Fenton’s reagent: Kinetic modeling and effects of parameters’, Desalination and Water Treatment, 51(13–15), pp. 2536–2542. doi: 10.1080/19443994.2012.749000.

Palma-Goyes, R. E. et al. (2014) ‘Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes’, Electrochimica Acta. Elsevier Ltd, 140, pp. 427–433. doi: 10.1016/j.electacta.2014.06.096.

Palma-Goyes, R. E. et al. (2018) ‘The effect of different operational parameters on the electrooxidation of indigo carmine on Ti/IrO2-SnO2-Sb2O3’, Journal of Environmental Chemical Engineering, 6(2), pp. 3010–3017. doi: 10.1016/j.jece.2018.04.035.

Paul, R. (2015) Denim and jeans: An overview, Denim: Manufacture, Finishing and Applications. Elsevier Ltd. doi: 10.1016/B978-0-85709-843-6.00001-9.

Qiu, M. and Huang, C. (2010) ‘A comparative study of degradation of the azo dye C.I. Acid Blue 9 by Fenton and photo-Fenton oxidation’, Desalination and Water Treatment, 24(1–3), pp. 273–277. doi: 10.5004/dwt.2010.1619.

Ramos, M. D. N. et al. (2021) ‘A critical analysis of the alternative treatments applied to effluents from Brazilian textile industries’, Journal of Water Process Engineering, 43(May), p. 102273. doi: 10.1016/j.jwpe.2021.102273.

Ramos, R. O. et al. (2020) ‘Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: Comparison of pathways, products and kinetics’, Journal of Water Process Engineering. Elsevier, 37(May), p. 101535. doi: 10.1016/j.jwpe.2020.101535.

Saggioro, E. M. et al. (2015) ‘Photo-decolorization and ecotoxicological effects of solar compound parabolic collector pilot plant and artificial light photocatalysis of indigo carmine dye’, Dyes and Pigments, 113, pp. 571–580. doi: 10.1016/j.dyepig.2014.09.029.

Santana, C. S. et al. (2019) ‘Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid’, International Journal of Environmental Research and Public Health, 16(9). doi: 10.3390/ijerph16091602.

Toratane, M. (2013) ‘Where is the Border Line between Strong Acids and Weak Acids?’, World Journal of Chemical Education, 1(1), pp. 12–16. doi: 10.12691/wjce-1-1-4.

Vedrenne, M. et al. (2012) ‘A ferrous oxalate mediated photo-Fenton system: Toward an increased biodegradability of indigo dyed wastewaters’, Journal of Hazardous Materials. Elsevier B.V., 243, pp. 292–301. doi: 10.1016/j.jhazmat.2012.10.032.

Yu, X. et al. (2020) ‘An experimental approach to the optimization of the dosage of hydrogen peroxide for Fenton and photo-Fenton processes’, Science of the Total Environment, 743. doi: 10.1016/j.scitotenv.2020.140402.

Yukseler, H. et al. (2017) ‘Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill’, Journal of Environmental Management. Elsevier Ltd, 203, pp. 1118–1125. doi: 10.1016/j.jenvman.2017.03.041.

Zhang, M. hui et al. (2019) ‘A review on Fenton process for organic wastewater treatment based on optimization perspective’, Science of the Total Environment. Elsevier B.V., 670, pp. 110–121. doi: 10.1016/j.scitotenv.2019.03.180.

Zhao, Z. et al. (2020) ‘Degradation of indigo carmine by coupling Fe(II)-activated sodium persulfate and ozone in a rotor-stator reactor’, Chemical Engineering and Processing - Process Intensification. Elsevier, 148(June 2019), p. 107791. doi: 10.1016/j.cep.2019.107791.

Zukawa, T. et al. (2019) ‘Photolysis of Indigo Carmine solution by planar vacuum-ultraviolet (147 nm) light source’, Chemosphere. Elsevier Ltd, 214, pp. 123–129. doi: 10.1016/j.chemosphere.2018.09.102.

Zúñiga-Benítez, H., Muñoz-Calderón, A. and Peñuela, G. A. (2018) ‘Removal of a mix of benzophenones and parabens using solar photo-Fenton and a cylinder parabolic collector in aqueous solutions’, Journal of Environmental Chemical Engineering. Elsevier, 6(6), pp. 7347–7357. doi: 10.1016/j.jece.2018.08.039.

DOI: https://doi.org/10.34117/bjdv7n11-044


  • There are currently no refbacks.