Virulence profile of tigecycline-resistant Gram-negative bacilli isolated from river waters using the Caenorhabditis elegans infection model / Perfil de virulência de bacilos Gram-negativos resistentes à tigeciclina isolados das águas dos rios usando o modelo de infecção por Caenorhabditis elegans

Barbara Araújo Nogueira, Julianna Giordano Botelho Olivella, Renata da Silva Vasconcelos, Bruna Ribeiro Sued-Karam, Paula Marcele Afonso Pereira Ribeiro, Sérgio Eduardo Longo Fracalanzza, Ana Claudia de Paula Rosa Ignácio, Ana Luíza Mattos-Guaraldi

Abstract


Last-resort antibiotics act as ultimate force to overcome multidrug-resistant strains infections. Cases of tigecycline resistance in gram-negative bacilli in clinical settings are reported worldwide, however, there is no data related to tigecycline resistant strains in river water. This study demonstrates seven tigecycline gram-negative bacilli isolated from river water in Rio de Janeiro metropolitan area, their resistance genes, ability of biofilm formation with/without antibiotics and behavior using the nematode Caenohabidits elegans as infection in vivo model. From 24 gram-negative isolated strains, 16 (66.6%) were classified as multidrug-resistant, however, seven (29.1%) presented resistant to all antimicrobial agents tested, including tigecycline and have been identified by MALDI-TOF as A. baumannii, E. aerogenes and P. agglomerans. All tigecycline-resistant strains presented amplification products for ESBL, AME and PMQR and ability of biofilm formation on hydrophilic and hydro­phobic abiotic surfaces with and without antimicrobial agents. The presence of antimicrobials did not inhibit biofilm formation. Tigecycline-resistant strains differed of OP50 control with P<0,0001 indicating its virulence potential, however, none of them were capable to kill all nematodes during 5 days infection. In conclusion, tigecycline-resistant gram-negative strains have important global public health implications due to the therapeutic problems they pose. Further studies and continuous surveillance of tigecycline-resistant strains in both clinical and aquatic environment remains necessary to track and understand the dissemination of tigecycline resistance.


Keywords


gram negative bacilli; tigecycline-resistant; genotypic profile; biofilm formation; Caenohabidits elegans, public health.

References


- Corbella X, Montero A, Pujol M, Dominguez M A, Ayats J, Argerich M J, Garrigosa F, et al. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol. 2000; 38 (11):4086-95.

- Oliva A, D’Abramo A, D’Agostino C, Iannetta M, Mascellino M T, Gallinelli C, Mastroiani C M, VulloV. Synergistic activity and effectiveness of a duble-carbapenem regimen in pandrug-resistant Klebsiella pneumoniae bloodstream infections. J Antimicrob Chemother. 2014; 69 (6):1718-20.

- Berendonk, T. U.; Merlin, C.; Manaia, C. M.; Cytryn, E. Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 2015.

- Maravic, A.; Skocibusic, M.; Cvjetan, S.; Samanic, I.; Fredotovic, Z.; Puizina, J. Prevalence and Diversity of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae from Marine Beach Waters. Marine Pollution Bulletins, v. 90, p. 60–67, 2015.

- Conte, D.; Palmeiro, J.K.; da Silva Nogueira, K.; de Lima, T.M.; Cardoso, M.A.; Pontarolo, R.; Degaut Pontes, F.L.; Dalla-Costa, L.M. Characterization of CTX-M Enzymes, Quinolone Resistance Determinants, and Antimicrobial Residues from Hospital Sewage, Wastewater Treatment Plant, and River Water. Ecotoxicology and Environmental Safety, v. 136, p. 62–69, 2017.

- Nascimento, E. D.; Araújo, M. F. F. Antimicrobial resistance in bacteria isolated from aquatic environment in Brazil: a systematic review. Revista Ambiente e Água, v. 9, n. 2, 2014.

- Coutinho, F. H.; Silveira, S. B. Antibiotic resistance is widespread in urban aquatic environment of Rio de Janeiro, Brazil. Microbial Ecology, v. 68, n. 3, 2014.

- Yaghoubi, S.; Zekiy, A. O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness and mechanisms and epidemiology of resistance: narrative review. European Journal of Clinical Microbiology and Infectious Diseases, 2021.

- Delgado-Gardea, M. C.; Tamez-Guerra, P.; Gomez-Flores, R.; Serna, F. J. Z. D.; Veja, G. E.; Nevárez-Moorillón, G. V.; Pérez-Recoder, M. C.; Sánchez-Ramírez, B.; Gonzáles-Horta, M. C.; Infante-Ramírez, R. Multidrug-resistant bactéria isolated from surface water in Bassaseachic Falls National Park, Mexico. International Journal of Environmental Research and Public Health; v. 13, n. 597, 2016.

- Basak, S.; Singh, P.; Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. Journal of Pathogens. 2016.

- Sifri C D, Begun J, Ausubel F M. The worm has turned—microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005; 13(3):119-27.

- Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. NatRev Drug Discov. 2006; 5(5);387-98.

- Yilmaz L S, Wallhout A J. A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst. 2016: 2(5):297-311.

- Gerbaba T K, Green-Harrison L, Buret A G. Modeling host-microbiome interactions in Caenorhabditis elegans. J. Nematol. 2017; 49(4):348-356.

- Grewal P S, Wright D J. Migration of Caenorhabditis elegans (Nematoda: Rabditidae) larve towards bacteria and the nature of the bacterial stimulus. Fundam App Nematol. 1992; 15(2);159-166.

- Avery L, Shtonda B B. Food transport in the C. elegans pharynx. J Exp Biol. 2003; 206(Pt14):2441-57.

- Nogueira, B. A.; Olivella, J. G. B., Gil, A. C.; Meirelles-Pereira, F.; Gonçalves, V. D.; Andrade, A. F. B.; Bello, A. R.; Pereira, J. A. A. Detection of bacterial samples on the aquatic ecosystems adjacent to Saquarema Lagoon – Rio de Janeiro. Revista de Ciências Médicas e Biológicas; v.14, n. 2, p. 147-152; 2015

- Silva, C. G. C.; Campana, E. H.; Vasconcelos, P. C.; Silva, N. M. V.; Filho, L. S.; Leite, E. L.; Givisiez, P. E. N.; Gebreyes, W. A.; Oliveira, C. J. B. Occurrence of KPC-producing Escherichia coli in Psittaciformes rescued from trafficking in Paraíba, Brazil. International Journal of Environmental Research and Public Health, n. 18, v. 95, p.1-9, 2021.

- Bauer, A. W.; Kirby, W. M.; Sherris, J. C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, v. 45, p. 493-496, 1966.

- CLSI- Clinical Laboratories Standards Institute. Performance Standards for antimicrobial disk susceptibility tests. Approved Standard CLSI Document M2, 2019. Clinical Laboratories Standards Institute, Waine. PA EUA

- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E. Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012.

- Pereira-Ribeiro, P. M.; Sued-Karam, B. R.; Faria, Y. V.; Nogueira, B. A.; Colodette, S. S.; Fracalanzza, S. E. L.; Duarte, J. L. M. B.; Júnior, R. H. Mattos-Guaraldi, A. L. Influence of antibiotics on biofilm formation by different clones of nosocomial Staphylococcus haemolitucus. Future Microbiology, v. 14, n. 9, 2019.

- Yang, J. L.; Wang, M. S.; Cheng, A. C.; Pan, K. C.; Li, C. F.; Deng, S. X. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World Journal of Gastroenterology, v. 14, n. 18, p. 2872-2876, 2008.

- Arlet, G.; Philippon, A. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable beta-lactamases (TEM, SHV, CARB). FEMS Microbiology letters. 68: 1: 19-25; 1991

- Pitout, J. D. D.; Hossain, A.; Hanson, N.D. Phenotypic and Molecular Detection of CTX-M-b-Lactamases Produced by Escherichia coli and Klebsiella spp. Journal of Clinical Microbiology; v. 42, n. 12, p. 5715–5721; 2004.

- Van De Klundert, J. A.; Vliegenthart, J. S. Nomenclature of aminoglycoside resistance genes: a comment. Antimicrobial Agents and Chemotherapy. 37: 4:927-929; 1993.

- Jensen, V. F.; Jakobsen, L.; Emborg, H. D.; Seyfarth, A. M.; Hammerum, A. M. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. Journal of Antimicrobial Chemotherapy, v. 58, n. 1, 2006.

- Jiang, Y.; Zhou, Z.; Qian, Y.; Wei, Z.; Yu, Y.; Hu, S.; Li, L. Plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in extender-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae in China. Journal of Antimicrobial Chemotherapy. 61:5:1003-1006; 2008.

- Merritt, J.H.; Kadouri, D.E.; O’Toole, G.A. Growing and analyzing static biofilm. Current Protocols in Microbiology. Chapter 1, Unit 1B; 2005.

- Sued, B. P. R.; Pereira, P. M. A.; Faria, Y. V.; Ramos, J. N.; Binatti, V. B.; Santos, K. R. N.; Seabra, S. H.; Hirata Jr, R.; Vieira, V. V.; Mattos-Guaraldi, A. L.; Pereira, J. A. A. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Memórias do Instituto Oswaldo Cruz; 2017.

- Mattos-Guaraldi, A.L.; Formiga, L.C. Relationship of biotype and source to the hemagglutination and adhesive properties of Corynebacte¬rium diphtheriae. Brazilian Journal of Medical and Biological Research; v. 24, n. 4, p. 399-406, 1991.

- Santos, C. S.; Santos, L. S.; Souza, M. C.; Dourado, F. S.; Dias, A. S.; Sabbadini, O. S.; Pereira, G. A.; Cabral, M. C.; Hirata Júnior, R.; Mattos-Guaraldi, A. L. Non-opsonic phagocytosis of homologous non-toxinogenic and toxinogenic Corynebacterium diphtheriae strains by human U-937macrophages. Microbiology and Imunology, v. 54, p. 1-10, 2010.

- Antunes, C. A.; Clark, L.;Wanuske, M. T.; Hacker, E.; Ott, L.; Simpson-Louredo, L.; Luna, M. G.; Hirata, Jr. R.; Mattos-Guaraldi, A. L.; Hodgkin, J.; Burkovski, A. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria. Microbiology, v. 162, p. 84-93, 2015b.

- Nascimento E D, Araújo M F F. Antimicrobial resistance in bacteria isolated from aquatic environments in Brazil: a systematic review. Rev Ambient Água. 2014; 9(2):239-49.

- Langley J M, Hanakowski M, Leblanc J C. Unique epidemiology of nosocomial urinary tract infection in children. Am J Infect Control. 2001; 29(2):94-8.

- Thiolas A, Bollet C, Scola B, Raoult D, Pagès J M. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob Agents Chemother. 2005; 49(4):1354-8

- Mardaneh J, Dallall M M S. Isolation, identification and antimicrobial susceptibility of Pantoea (Enterobacter) agglomerans isolated from consumed powdered infant formula milk (PIF) in NICU ward: First report from Iran. IranJ Microbiol. 2013; 5(3):263-7.

- Howard A, O’Donoghue M, Feeney A, Sleator R D. Acinetobacter baumannii. An emerging opportunistic pathogen. Virulence. 2012: 3(3):243-50.

- Ruppé E, Woerther P L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care.2015; 5(21).

- Zhi-Wen Y, Yan-Li Z, ManY, Wei-Jun F. Clinical treatment of pandrug-resistant bacterial infection consulted by clinical pharmacist. Saudi Pharm J. 2015; 23(4):377-80.

- Spanu, T.; Angelis, G. D.; Cipriani, M.; Pedruzzi, B.; D’Inzeo, T.; Cataldo, M.A.; Sganga, G.; Tacconelli, E. In vivo emergence of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Antimicrobial Agents Chemotheraphy; v. 56, p. 4516-4518, 2012.

- Bajpai T, Bhatambare G S, Pandey M, Varma M. Prevalence of multi extensively and pan drug resistant uropathogens among women patients visiting a tertiary care hospital in central India. Int J Health Syst Disaster Manage. 2014: 2(1):38-43.

- Dabul, A. N. G.; Camargo, I. L.B. C. Molecular characterization of methicillin-resistant Staphylococcus aureus resistant to tigecycline and daptomycin isolated Iná hospital in Brazil. Epidemiology & Infection, 2013.

- Hladicz, A.; Kittinger, C.; Zarfel, G. Tigecycline resistant Klebsiella pneumoniae isolated from Austrian River water. Int J Environ Res Public Health, v. 14, n. 10, 2017.

- Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; da Silva, Q.M.; Matte, G.R.; Sato, M.I.; Matte, M.H. Genetic Background of Novel Sequence Types of CTX-M-8 and CTX-M-15 Producing Escherichia coli and Klebsiella pneumoniae from Public Wastewater Treatment Plants in Sao Paulo, Brazil. Environmental Science and Pollution Research International, v. 23, p. 4953–4958, 2016

- Garbati, M. A.; Abdulhak, A. B.; Baba, K.; Sakkijha, H. Infection due to colistin-resistant Enterobacteriaceae in critically-ill patients. The Journal of Infection in Developing Countries; v. 7, n. 10, p. 713-719, 2013.

- Goic-Barisic I, Music M S, Kovacic A, Tonkic M, Hrenovic J. Pan drug-resistant environmental isolate of Acinetobacter baumanniifrom Croatia. Microb Drug Resist 2017; 23(4):494-496.

- Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassionos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; et al. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 2015.

- Pournaras, S.; Koumaki, V.; Spanakis, N.; Gennimata, V.; Tsakris, A. Current Perspectives on Tigecycline Resistance in Enterobacteriaceae: Susceptibility Testing Issues and Mechanisms of Resistance. International Journal of Antimicrobial Agents, v. 48, p. 11-18, 2016.

- Kolter, R. Pratt, L. A. Genetic analysis of bacterial biofilm formation. Current Opinion in Microbiology, 598-603, 1999.

- Devaraj, C.; Sajjan, A. G. Comparision of three different methods for the detection of biofilm in gram positive cocci and gram-negative bacilli isolated from clinical specimens. Journal of Pharmaceutical Sciences and Research; v. 7, n. 11, 2015.

- Pereira, P. M. A.; Binatti, V. B.; Sued, B. P. R.; Ramos, J. N.; Peixoto, R. S.; Simões, C.; Castro, E. A.; Duarte, J. L. M. B.; Vieira, V. V.; Junior, R. H.; Santos, K. R. N.; Mattos-Guaraldi, A. L.; Pereira, J. A. A. Staphylococcus haemolyticus disseminated among neonates with bacteremia in a neonatal intensivecareunit in Rio de Janeiro, Brazil. Diagnostic Microbiology and Infectious Disease, v. 78, p. 85-92, 2014.

- Harrington A J, Hamamichi S, Caldwell G A, Caldwell K A. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dvn, 2010: 239(5):1282-95.

- Marsh E K, May R C. Caenorhabditis elegans, a model organism for investigation immunity. Appl Environ Microbiol. 2012; 78(7):2075-81.

- Tissenbaum H A. Using C. elegans for aging research. Invertebr Reprod Dev. 2015; 30(59)(Sup 1):59-63.

- Ewbank J J, Zugasti O. C. elegans: model host and tool for antimicrobial drug discovery. Dis Model Mech. 2011; 4(3):300-4.

- Johnson J R, Kuskowski M A, Owens K, Gajewski A, Winokur P L. Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis. 2003; 188(5):759-68.




DOI: https://doi.org/10.34117/bjdv7n11-351

Refbacks

  • There are currently no refbacks.