Gut microbiota of obese individuals and their relation with the onset of obesity / Microbiota intestinal de indivíduos obesos e a sua relação com o início da obesidade

Authors

  • Eliandra Mirlei Rossi Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Eduardo Ottobelli Chielle
  • Jessica Fernanda Barreto Honorato
  • Cinthia Bertolini
  • Letícia Marconatto

DOI:

https://doi.org/10.34117//bjdv8n1-123

Keywords:

Gut Microbiota, Obesity, Metabolic Profile.

Abstract

The gut microbiota has been linked to obesity in humans. This study aimed to characterize the fecal microbiota of normal weight, overweight and obese individuals and the interaction with metabolic parameters and the development of obesity. Blood and feces samples were collected from 169 patients. Patients were grouped based on body mass index (BMI): normal weight (NW, 18-24.9), overweight (OW, 25-29.9) and obesity (OB, ≥ 30) with age between 18 and 30 years. Serum of patient was used to characterize the metabolic profile and fecal microbiota was characterized. As expected, Firmicutes presented the highest proportion. No significant differences were found in the microbiota when compared among the groups. The most abundant genera in normal weight individuals were an OTU belonging to the family Lachnospiraceae.  OW patients, the most abundant genera were Bacillus.  In OB patients, the most abundant genera were an OTU belonging to the family Lachnospiraceae. The results os metabolic profile showed significant differences to OB group mainly for cholesterol, Triglycerides, LDL-c, HOMA, and TBARS. These results will help us to understand the connection between microbiota and metabolic profile in those groups.

References

Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015,159(2): 122-127. doi: 10.1016/j.clim.2015.05.014.

Riaz Rajoka MS, Shi J, Mehwish HM, Zhu J, Li Q, Shao D, et al. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness 2017, 6(3):121–30. Doi: http://dx.doi.org/10.1016/j.fshw.2017.07.003

Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering: Research Microecology –Review 2017, 3:71–82. DOI:https://doi.org/10.1016/J.ENG.2017.01.008

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18(6):499-502. PMID: 4337382.

Lapenna D, Ciofani G, Pierdomenico SD, Giamberardino MA, Cuccurullo F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic Biol Med. 2001, 31(3):331-5. Doi: 10.1016/s0891-5849(01)00584-6.

Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol. 2011, 77: 1309–1314. Doi: 10.1128/AEM.02257-10.

Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One. 2011, 6(3):e17288. Doi:10.1371/journal.pone.0017288

Dame-Teixeira N, Cena JA, Cortes DA, Belmok A, Borges LGA, Marconatto L, et al. Presence of Archaea in dental caries biofilms. Archives of Oral Biology 2020, 110:1-6.

DOI: doi.org/10.1016/j.archoralbio.2019.104606

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010, 7(5):335-336. Doi:10.1038/nmeth.f.303

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013, 41: D590–D596. Doi: 10.1093/nar/gks1219

Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4 (1):9pp.

Horie M, Miura T, Hirakata S, Hosoyama A, Sugino S, Umeno A, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim. 2017, 66(4):405-416. doi: 10.1538/expanim.17-0021.

Townsend DK, McGregor K, Wu E, et al. Insulin resistance and metabolic syndrome criteria in lean, normoglycemic college-age subjects. Diabetes & Metabolic Syndrome. 2018, 12(5):609-616. DOI: 10.1016/j.dsx.2018.03.025

O'Connor L, Imamura F, Brage S, Griffin SJ, Wareham NJ, Forouhi NG. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers. Clin Nutr. 2018, 37(4):1313-1322. doi: 10.1016/j.clnu.2017.05.030.

Assunção SNF, Boa Sorte NCA, Alves CAD, Mendes PSA, Alves CRB, Silva LR. Glucose alteration and insulin resistance in asymptomatic obese children and adolescents. J. Pediatr 2018, 94( 3 ): 268-272. doi.org/10.1016/j.jped.2017.06.008.

Rodríguez-Ramírez G, Simental-Mendía LE, Carrera-Gracia MA, Quintanar-Escorza MA. Vitamin E Deficiency and Oxidative Status are Associated with Prediabetes in Apparently Healthy Subjects. Arch Med Res. 2017, 48(3):257-262. doi: 10.1016/j.arcmed.2017.03.018.

Gutierrez-Buey G, Núñez-Córdoba JM, Llavero-Valero M, Gargallo J, Salvador J, Escalada J. Is HOMA-IR a potential screening test for non-alcoholic fatty liver disease in adults with type 2 diabetes? Eur J Intern Med. 2017, 41:74-78. doi: 10.1016/j.ejim.2017.03.006.

El-Aal AA, El-Ghffar EAA, Ghali AA, Zughbur MR, Sirdah MM. The effect of vitamin C and/or E supplementations on type 2 diabetic adult males under metformin treatment: A single-blinded randomized controlled clinical trial. Diabetes & Metabolic Syndrome. 2018, 12(4):483-489. DOI: 10.1016/j.dsx.2018.03.013.

Lee, MK, Bok, SH, Jeong, TS, Moon, SS, Lee, SE, Yong, BP, et al. (2002). A suplementação de naringenina e seu derivado sintético altera as atividades das enzimas antioxidantes do eritrócito e do fígado em ratos alimentados com colesterol alto. Bioorg. Med. Chem. 10, 2239–2244. doi: 10.1016 / S0968-0896 (02) 00059-7

Horn RC, Gelatti GT, Mori NC, Tissiani AC, Mayer MS, Pereira EA, et al . Obesity, bariatric surgery and oxidative stress. Rev. Assoc. Med. Bras. 2017, 63( 3 ): 229-235. Doi: https://doi.org/10.1590/1806-9282.63.03.229.

Chielle EO, Bonfanti G, De Bona KS, Moresco RN, Moretto MB. Adenosine deaminase, dipeptidyl peptidase-IV activities and lipid peroxidation are increased in the saliva of obese young adult. Clin Chem Lab Med. 2015, 53(7):1041-7. doi: 10.1515/cclm-2014-1086.

Maruvada P, Leone V, Kaplan LM, Chang EB. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe. 2017, 22(5):589-599. doi: 10.1016/j.chom.2017.10.005.

Davis, C. The Gut Microbiome and Its Role in Obesity. Nutrition Today. 2016, 51(4): 167–174. doi: 10.1097/NT.0000000000000167.

Breban M. Gut microbiota and inflammatory joint diseases. Joint Bone Spine 2016 83(6):645-649. DOI:10.1016/j.jbspin.2016.04.005.

Díaz-Rizzolo DA, Kostov B, López-Siles M, Serra A, Colungo C, González-de-Paz L, et al. Healthy dietary pattern and their corresponding gut microbiota profile are linked to a lower risk of type 2 diabetes, independent of the presence of obesity. Clin Nutr. 2020, 39(2): 524-532. Doi: 10.1016/j.clnu.2019.02.035.

Lamoureux EV, Grandy SA, Langille MGI. Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome. mSystems. 2017, 2(4):e00006-17. Doi: 10.1128/mSystems.00006-17.

Lippert K, Kedenko L, Antonielli L, Kedenko I, Gemeier C, Leitner M, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes. 2017, 8(4):545-556. doi: 10.3920/BM2016.0184.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 2009, 457(7228):480-4. doi: 10.1038/nature07540.

Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes (Lond). 2017,41(7):1099-1105. doi: 10.1038/ijo.2017.66.

Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017,19(1):29-41. doi: 10.1111/1462-2920.13589.

Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuño MI, Tinahones FJ. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res. 2016, 8(12):5672-5684.

De França, Thaíza Barros, Silva, Paola Frassinette de Oliveira Albuquerque, Dos Santos Nataly Ferreira. Effects of probiotics on the microbiota-intestine-brain axis and the anxiety and depression disorder. Brazilian Journal of Development, Curitiba, v.7, n.2, p. 16212-16225, feb. 2021.

Downloads

Published

2022-01-10

How to Cite

Rossi, E. M., Chielle, E. O., Honorato, J. F. B., Bertolini, C., & Marconatto, L. (2022). Gut microbiota of obese individuals and their relation with the onset of obesity / Microbiota intestinal de indivíduos obesos e a sua relação com o início da obesidade. Brazilian Journal of Development, 8(1), 1921–1937. https://doi.org/10.34117//bjdv8n1-123

Issue

Section

Original Papers