Cognitive and behavioral manifestations post Covid-19: a systematic review / Manifestações cognitivas e comportamentais pós Covid-19: uma revisão sistemática

Lethicia de Andrade Nunes, Wóquiton Rodrigo Marques Martins Martins

Abstract


This review serves to summarize available information, to the moment, regarding the coronavirus and the central nervous system. through a Systematic Bibliographic Review of studies extracted from the following journals: NCBI, PubMed, The Lancet, and New England Journal of Medicine, written in English or Portuguese on the period of 2019 to 2022. The research approached a total of 801 articles. After reading the titles and abstracts, were excluded those that restrict their focus to patients previously neurologically affected. Overall, 162 papers were fully read, including those that exposed patients with neuropsychiatric symptoms and emphasized cognitive impairment after infection of SARS-Cov-2. The main focus of this review is the phenomenon that may affect the parenchyma, the brain fog. It refers to the great inflammation caused by the virus that can damage the brain not only in the activated viruses’ phase but also after its resolution by the body. This mechanism is probably related to neurodegenerative diseases and can be the cause of cognitive disorders' incidence after the pandemics.


Keywords


“COVID-19”, “cognitive impairment”, “cognitive symptoms", “neurological symptoms in COVID-19 infected patients”, and “brain fog”.

Full Text:

PDF

References


Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature medicine, 26(4), 450-452. Nat Med. 2020 Apr;26(4):450-452. Available from: 10.1038/s41591-020-0820-9. PMID: 32284615; PMCID: PMC7095063.

Rasmussen, A. L. (2021). On the origins of SARS-CoV-2. Nature Medicine, 27(1), 9-9.Available from: https://doi.org/10.1038/s41591-020-01205-5

Zhang, T., Wu, Q., & Zhang, Z. (2020). Pangolin homology associated with 2019-nCoV. BioRxiv. Available from: https://doi.org/10.1101/2020.02.19.950253

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7), e00127-20. Available from: https://doi.org/10.1128/JVI.00127-20

Wang, N., Li, S. Y., Yang, X. L., Huang, H. M., Zhang, Y. J., Guo, H., ... & Shi, Z. L. (2018). Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sinica, 33(1), 104-107. Available from: https://doi.org/10.1007/s12250-018-0012-7

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases, 20(5), 533-534.. https://doi.org/10.1016/S1473-3099(20)30120-1 Online dashboard available from: https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6 acess in March 30, 2022

Boschiero, M. N., Palamim, C. V. C., Ortega, M. M., Mauch, R. M., & Marson, F. A. L. (2021). One year of coronavirus disease 2019 (COVID-19) in Brazil: a poltical and social overview. Annals of global health, 87(1) Available from: https://dx.doi.org/10.5334%2Faogh.3182

Silva, H. M. (2021). The danger of denialism: lessons from the Brazilian pandemic. Bulletin of the National Research Centre, 45(1), 1-2. Available from: https://doi.org/10.1186/s42269-021-00516-y

Ministério da Saúde. Secretaria de Vigilância em Saúde (SVS): Guia de Vigiläncia Epidemiológica do COVID-19. Available from: https://covid.saude.gov.br/

Boy, G. A. (1998). Cognitive function analysis (Vol. 2). Greenwood Publishing Group.

Desforges, M., Le Coupanec, A., Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2019). Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system?. viruses, 12(1), 14. Available from: https://doi.org/10.3390/v12010014

De Felice, F. G., Tovar-Moll, F., Moll, J., Munoz, D. P., & Ferreira, S. T. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends in neurosciences, 43(6), 355-357. Available from: https://doi.org/10.1016/j.tins.2020.04.004

Chen, L., Li, X., Chen, M., Feng, Y., & Xiong, C. (2020). The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular research, 116(6), 1097-1100. Available from: https://doi.org/10.1093/cvr/cvaa078

Baig, A. M., Khaleeq, A., Ali, U., & Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience, 11(7), 995-998. Available from: https://dx.doi.org/10.1021/acschemneuro.0c00122

He, L., et al., Pericyte-specific vascular expression of SARS-CoV-2 receptor ACE2 – implications for microvascular inflammation and hypercoagulopathy in COVID-19 patients. prepublished bioRxiv Available from: https://doi.org/10.1101/ 2020.05.11.0885002020.

Rocha, N. P., Martins, L. D. C. A., Teixeira, A. L., & Reis, H. J. (2011). Processo inflamatório e neuroimunomodulação na doença de Alzheimer: revisão de literatura. Revista Neurociências, 19(2), 300-313. Available from: https://doi.org/10.34024/rnc.2011.v19.8385

Fazzini, E., Fleming, J., & Fahn, S. (1992). Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 7(2), 153-158. Available from: https://doi.org/10.1002/mds.870070210

Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., ... & Antel, J. P. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. The Journal of Immunology, 175(7), 4320-4330. Available from:

Hosp, J. A., Dressing, A., Blazhenets, G., Bormann, T., Rau, A., Schwabenland, M., ... & Meyer, P. T. (2021). Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain, 144(4), 1263-1276. Available from: https://doi.org/10.1093/brain/awab009

Paterson, R. W., Brown, R. L., Benjamin, L., Nortley, R., Wiethoff, S., Bharucha, T., ... & Zandi, M. S. (2020). The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain, 143(10), 3104-3120. Available from: https://doi.org/10.1093/brain/awaa240

Zhou, H., Lu, S., Chen, J., Wei, N., Wang, D., Lyu, H., ... & Hu, S. (2020). The landscape of cognitive function in recovered COVID-19 patients. Journal of psychiatric research, 129, 98-102. Available from: https://doi.org/10.1016/j.jpsychires.2020.06.022

Woo, M. S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., ... & Friese, M. A. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain communications, 2(2), fcaa205. Available from: https://doi.org/10.1093/braincomms/fcaa205

McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current opinion in neurobiology, 5(2), 205-216. Available from: https://doi.org/10.1016/0959-4388(95)80028-Xhttps://doi.org/10.1016/0959-4388(95)80028-X

Raony, Í., de Figueiredo, C. S., Pandolfo, P., Giestal-de-Araujo, E., Oliveira-Silva Bomfim, P., & Savino, W. (2020). Psycho-neuroendocrine-immune interactions in COVID-19: potential impacts on mental health. Frontiers in Immunology, 11, 1170. Available from: https://doi.org/10.3389/fimmu.2020.01170

Troyer, E. A., Kohn, J. N., & Hong, S. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain, behavior, and immunity, 87, 34-39. Available from: https://doi.org/10.1016/j.bbi.2020.04.027

Miller, A. H., Haroon, E., Raison, C. L., & Felger, J. C. (2013). Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depression and anxiety, 30(4), 297-306. Available from: https://doi.org/10.1002/da.22084

Cheng, S. K. W., Tsang, J. S. K., Ku, K. H., Wong, C. W., & Ng, Y. K. (2004). Psychiatric complications in patients with severe acute respiratory syndrome (SARS) during the acute treatment phase: a series of 10 cases. The British Journal of Psychiatry, 184(4), 359-360. Available from: https://doi.org/10.1192/bjp.184.4.359

Wang, F., Kream, R. M., & Stefano, G. B. (2020). Long-term respiratory and neurological sequelae of COVID-19. Medical science monitor: international medical journal of experimental and clinical research, 26, e928996-1. Available from: https://dx.doi.org/10.12659%2FMSM.928996

Jaunmuktane, Z., Mahadeva, U., Green, A., Sekhawat, V., Barrett, N. A., Childs, L., ... & Brandner, S. (2020). Microvascular injury and hypoxic damage: emerging neuropathological signatures in COVID-19. Acta neuropathologica, 140(3), 397-400. Available from: https://doi.org/10.1007/s00401-020-02190-2

Bryce, C., Grimes, Z., Pujadas, E., Ahuja, S., Beasley, M. B., Albrecht, R., ... & Fowkes, M. (2020). Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. MedRxiv. Available from: https://doi.org/10.1101/2020.05.18.20099960

Lin, Y. S., Lin, C. F., Fang, Y. T., Kuo, Y. M., Liao, P. C., Yeh, T. M., ... & Lei, H. Y. (2005). Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clinical & Experimental Immunology, 141(3), 500-508. Available from: https://doi.org/10.1111/j.1365-2249.2005.02864.x

Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., ... & Leong, A. S. Y. (2005). Multiple organ infection and the pathogenesis of SARS. The Journal of experimental medicine, 202(3), 415-424. Available from: https://doi.org/10.1084/jem.20050828

Munck, A., & Náray-Fejes-Tóth, A. (1994). Glucocorticoids and stress: permissive and suppressive actions. Annals of the New York Academy of Sciences, 746, 115-30. Available from: https://doi.org/10.1111/j.1749-6632.1994.tb39221.x

Del Rey, A., & Besedovsky, H. O. (2017). Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. Endocrine immunology, 48, 1-18. Available from: https://doi.org/10.1159/000452902

Raony, Í., de Figueiredo, C. S., Pandolfo, P., Giestal-de-Araujo, E., Oliveira-Silva Bomfim, P., & Savino, W. (2020). Psycho-neuroendocrine-immune interactions in COVID-19: potential impacts on mental health. Frontiers in Immunology, 11, 1170. Available from: https://doi.org/10.3389/fimmu.2020.01170

Theoharides, T. C., & Konstantinidou, A. D. (2007). Corticotropin-releasing hormone and the blood-brain-barrier. Front Biosci, 12(1), 1615-1628. Available from:https://doi.org/10.2741/2174

Mastorakos, G. E. O. R. G. E., Chrousos, G. P., & Weber, J. S. (1993). Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. The Journal of Clinical Endocrinology & Metabolism, 77(6), 1690-1694. Available from:https://doi.org/10.1210/jcem.77.6.8263159

Raison, C. L., Borisov, A. S., Woolwine, B. J., Massung, B., Vogt, G., & Miller, A. H. (2010). Interferon-α effects on diurnal hypothalamic–pituitary–adrenal axis activity: relationship with proinflammatory cytokines and behavior. Molecular psychiatry, 15(5), 535-547. Available from: https://doi.org/10.1038/mp.2008.58

Wang, L. A., de Kloet, A. D., Smeltzer, M. D., Cahill, K. M., Hiller, H., Bruce, E. B., ... & Krause, E. G. (2018). Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology, 133, 85-93. Available from: https://doi.org/10.1016/j.neuropharm.2018.01.025

Penninx, B. W., Beekman, A. T., Corsi, A. M., Bremmer, M., Hoogendijk, W. J., Guralnik, J. M., ... & Bandinelli, S. (2007). Late-life depressive symptoms are associated with both hyperactivity and hypoactivity of the hypothalamo-pituitary-adrenal axis. The American journal of geriatric psychiatry, 15(6), 522-529. Available from: https://doi.org/10.1097/JGP.0b013e318033ed80

Ceban, F., Ling, S., Lui, L. M., Lee, Y., Gill, H., Teopiz, K. M., ... & McIntyre, R. S. (2021). Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. Brain, behavior, and immunity. Available from: https://doi.org/10.1016/j.bbi.2021.12.020

World Health Organization (WHO). Coronavirus Disease (COVID-19): Advice for the Public. (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public

Caporael, L. R. (1997). The evolution of truly social cognition: The core configurations model. Personality and Social Psychology Review, 1(4), 276-298. Available from: https://doi.org/10.1207%2Fs15327957pspr0104_1

Dunbar, R. I. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 6(5), 178-190. Available from: https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-8

Hawkley, L. C., & Cacioppo, J. T. (2003). Loneliness and pathways to disease. Brain, behavior, and immunity, 17(1), 98-105. Available from: https://doi.org/10.1016/S0889-1591(02)00073-9

House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540-545. Available from: https://doi.org/10.1126/science.3399889

Taylor, S., & Gonzaga, G. (2006). Evolution, relationships, and health: The social shaping hypothesis. Evolution and social psychology, 211-236. Available from: PMID: 14563073

Cacioppo, J. T., Hawkley, L. C., Crawford, L. E., Ernst, J. M., Burleson, M. H., Kowalewski, R. B., ... & Berntson, G. G. (2002). Loneliness and health: Potential mechanisms. Psychosomatic medicine, 64(3), 407-417. Available from: https://doi.org/10.1097/00006842-200205000-00005

Cacioppo, J. T., Hawkley, L. C., & Berntson, G. G. (2003). The anatomy of loneliness. Current directions in psychological science, 12(3), 71-74. Available from: https://doi.org/10.1111%2F1467-8721.01232

Kamal, M., Abo Omirah, M., Hussein, A., & Saeed, H. (2021). Assessment and characterisation of post‐COVID‐19 manifestations. International journal of clinical practice, 75(3), e13746. Available from: https://doi.org/10.1111/ijcp.13746

Brouwer, M. C., Ascione, T., & Pagliano, P. (2020). Neurologic aspects of covid-19: a concise review. Infez Med, 28(suppl 1), 42-5. PMID: 32532937

Nakamura, Z. M., Nash, R. P., Laughon, S. L., & Rosenstein, D. L. (2021). Neuropsychiatric complications of COVID-19. Current psychiatry reports, 23(5), 1-9. Available from: https://doi.org/10.1007/s11920-021-01237-9

Altuna, M., Sánchez-Saudinós, M. B., & Lleó, A. (2021). Cognitive symptoms after COVID-19. Neurology Perspectives, 1, S16-S24.Available from: PMCID: PMC8669718

Aryal, M. R., Gosain, R., Donato, A., Pathak, R., Bhatt, V. R., Katel, A., & Kouides, P. (2020). Venous thromboembolism in COVID-19: towards an ideal approach to thromboprophylaxis, screening, and treatment. Current cardiology reports, 22(7), 1-5. Available from: https://doi.org/10.1007/s11886-020-01327-9

Murthy, S., Gomersall, C. D., & Fowler, R. A. (2020). Care for critically ill patients with COVID-19. Jama, 323(15), 1499-1500. Available from: https://doi.org/10.1001/jama.2020.3633

58 Hellmuth, J., Barnett, T. A., Asken, B. M., Kelly, J. D., Torres, L., Stephens, M. L., ... & Peluso, M. J. (2021). Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. Journal of neurovirology, 27(1), 191-195. Available from: https://doi.org/10.1007/s13365-021-00954-4

Blomberg, B., Mohn, K. G. I., Brokstad, K. A., Zhou, F., Linchausen, D. W., Hansen, B. A., ... & Langeland, N. (2021). Long COVID in a prospective cohort of home-isolated patients. Nature Medicine, 27(9), 1607-1613. Available from: https://doi.org/10.1038/s41591-021-01433-3.

Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., & Krupinski, J. (2020). Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, behavior, & immunity-health, 9, 100163. Available from: https://doi.org/10.1016/j.bbih.2020.100163

Davis, H. E., Assaf, G. S., McCorkell, L., Wei, H., Low, R. J., Re'em, Y., ... & Akrami, A. (2021). Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine, 38, 101019. Available from: https://doi.org/10.1016/j.eclinm.2021.101019

Theoharides, T. C., Cholevas, C., Polyzoidis, K., & Politis, A. (2021). Long‐COVID syndrome‐associated brain fog and chemofog: Luteolin to the rescue. Biofactors, 47(2), 232-241. Available from: https://doi.org/10.1002/biof.1726

Theoharides, T. C., Stewart, J. M., & Hatziagelaki, E. (2015). Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Frontiers in neuroscience, 9, 225. Available from: https://doi.org/10.3389/fnins.2015.00225

Kempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., ... & Theoharides, T. C. (2005). Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British journal of pharmacology, 145(7), 934-944. Available from: https://doi.org/10.1038/sj.bjp.0706246

Calis, Z., Mogulkoc, R., & Baltaci, A. K. (2020). The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Reviews in Medicinal Chemistry, 20(15), 1475-1488. Available from: https://doi.org/10.2174/1389557519666190617150051

Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L., & Heredia, J. B. (2016). Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. International journal of molecular sciences, 17(6), 921. Available from: https://doi.org/10.3390/ijms17060921

Lee, N., Chan, K. A., Hui, D. S., Ng, E. K., Wu, A., Chiu, R. W., ... & Lo, Y. D. (2004). Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. Journal of clinical virology, 31(4), 304-309. Available from: https://doi.org/10.1016/j.jcv.2004.07.006

Theoharides, T. C., & Conti, P. (2020). Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents, 34(3), 1241-1243. Available from: https://doi.org/10.23812/20-editorial_1-5

Russell, C. D., Millar, J. E., & Baillie, J. K. (2020). Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The lancet, 395(10223), 473-475. Available from: https://doi.org/10.1016/S0140-6736(20)30317-2

Ledford, H. (2020). Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature, 582(7813), 469-470. Available from: https://doi.org/10.1038/d41586-020-01824-5

Ramage, A. E. (2020). Potential for cognitive communication impairment in COVID-19 survivors: a call to action for speech-language pathologists. American Journal of Speech-Language Pathology, 29(4), 1821-1832. Available from: https://doi.org/10.1044/2020_AJSLP-20-00147

Humphreys, H., Kilby, L., Kudiersky, N., & Copeland, R. (2021). Long COVID and the role of physical activity: a qualitative study. BMJ open, 11(3), e047632. Available from: http://dx.doi.org/10.1136/bmjopen-2020-047632

Hosey, M. M., & Needham, D. M. (2020). Survivorship after COVID-19 ICU stay. Nature reviews Disease primers, 6(1), 1-2. Available from: https://doi.org/10.1038/s41572-020-0201-1

Iodice, F., Cassano, V., & Rossini, P. M. (2021). Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer’s disease populations. Neurological Sciences, 42(2), 455-465. Available from: https://doi.org/10.1007/s10072-020-04902-8

Serrano-Castro, P. J., Estivill-Torrús, G., Cabezudo-García, P., Reyes-Bueno, J. A., Petersen, N. C., Aguilar-Castillo, M. A., ... & de Fonseca, F. R. (2020). Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic?. Neurología (English Edition), 35(4), 245-251. Available from: https://doi.org/10.1016/j.nrleng.2020.04.002

Al‐Sarraj, S., Troakes, C., Hanley, B., Osborn, M., Richardson, M. P., Hotopf, M., ... & Everall, I. P. (2021). Invited Review: The spectrum of neuropathology in COVID‐19. Neuropathology and applied neurobiology, 47(1), 3-16. Available from: https://doi.org/10.1111/nan.12667

Miners, S., Kehoe, P. G., & Love, S. (2020). Cognitive impact of COVID-19: looking beyond the short term. Alzheimer's research & therapy, 12(1), 1-16. Available from: https://doi.org/10.1186/s13195-020-00744-w

Heneka, M. T., Golenbock, D., Latz, E., Morgan, D., & Brown, R. (2020). Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer's research & therapy, 12(1), 1-3. Available from: https://doi.org/10.1186/s13195-020-00640-3

Fazzini, E., Fleming, J., & Fahn, S. (1992). Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 7(2), 153-158. Available from: https://doi.org/10.1002/mds.870070210

Fleming, J. O., El Zaatari, F. A., Gilmore, W., Berne, J. D., Burks, J. S., Stohlman, S. A., ... & Weiner, L. P. (1988). Antigenic assessment of coronaviruses isolated from patients with multiple sclerosis. Archives of neurology, 45(6), 629-633. Available from: https://doi.org/10.1001/archneur.1988.00520300047017

Blazhenets, G., Schroeter, N., Bormann, T., Thurow, J., Wagner, D., Frings, L., ... & Hosp, J. A. (2021). Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. Journal of Nuclear Medicine, 62(7), 910-915. Available from: https://doi.org/10.2967/jnumed.121.262128

Jason, L. A., Islam, M. F., Conroy, K., Cotler, J., Torres, C., Johnson, M., & Mabie, B. (2021). COVID-19 symptoms over time: comparing long-haulers to ME/CFS. Fatigue: biomedicine, health & behavior, 9(2), 59-68. Available from: https://doi.org/10.1080/21641846.2021.1922140




DOI: https://doi.org/10.34117/bjdv8n6-206