Analysis of mutations in APP1 protein associated with development and protection against Alzheimer's disease - an In silico approach / Análise de mutações na proteína APP1 associadas ao desenvolvimento e proteção contra a doença de Alzheimer - uma abordagem In silico

Gabriel Rodrigues Coutinho Pereira, Maíra de Oliveira Torres, Vicente Salgado Pires, Joelma Freire de Mesquita

Abstract


Introduction: Alzheimer's disease (AD) is the dementia with the highest number of cases worldwide, causing great social and economic impact. The amyloid cascade is the most accepted hypothesis to explain the beginning of AD. According to it, neurodegeneration is caused by the accumulation of Aβ peptides and the formation of amyloid plaques in the brain. In familial cases of Alzheimer's, mutations in the APP1 protein lead to increased production of Aβ plaques. Objectives: Analyze in silico the structural and functional impact of missense mutations in APP1 and construct a complete model for the protein. Methods: We generated and validated a theoretical structure of APP1 protein using structural modeling and quality assessment algorithms. We further analyzed the effects of AD-related mutations on APP1 protein and also the neuroprotective mutation A673T by performing functional predictions, evolutionary conservation analysis, and molecular dynamics (MD). Results: The predictive analysis indicated that most mutations occur in conserved regions of APP1 and also present an elevated rate of deleterious predictions, pointing to their harmful effects. The computational modeling generated an unprecedented, accurate and complete model of human APP1, whose quality was corroborated by validation algorithms and structural alignment. The MD simulations of codon 673 variants pointed to flexibility and essential dynamics alterations at the AICD and Aβ domains, which could have strong and non-intuitive consequences on APP1 interactions, including those involved in β-secretase cleavage and, consequently, aβ peptide formation. Conclusions: Flexibility and essential dynamics alterations upon codon 673 variants may have functional implications for APP1, influencing the generation of Aβ peptide, the main responsible for APP1 toxicity in AD.


Keywords


Alzheimer’s disease, amyloid precursor protein 1, In silico.

Full Text:

PDF

References


AGRAHARI, Ashish Kumar et al. A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metabolic Brain Disease, v. 33, n. 2, p. 589–600, 2018. Available at: https://doi.org/10.1007/s11011-017-0121-2

ALBÀ, M. Mar; CASTRESANA, Jose. On homology searches by protein Blast and the characterization of the age of genes. BMC Evolutionary Biology, v. 7, p. 1–8, 2007. Available at: https://doi.org/10.1186/1471-2148-7-53

ALZHEIMER’S ASSOCIATION. Global Prevalence. 2021. Available at: https://www.alz.org/aaic/releases_2021/global-prevalence.asp. Acesso em: 14 mar. 2022.

ASHKENAZY, Haim et al. ConSurf 2016 : an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, v. 44, n. May, p. 344–350, 2016. Available at: https://doi.org/10.1093/nar/gkw408

BATEMAN, Alex et al. UniProt: The universal protein knowledgebase. Nucleic Acids Research, [S. l.], v. 45, n. D1, p. D158–D169, 2017. Available at: https://doi.org/10.1093/nar/gkw1099

BATEMAN, Alex. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, [S. l.], 2019. Available at: https://doi.org/10.1093/nar/gky1049

CHEN, Vincent B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, v. 66, n. 1, p. 12–21, 2010. Available at: https://doi.org/10.1107/S0907444909042073

COBURGER, Ina et al. Analysis of the overall structure of the multi-domain amyloid precursor protein (APP). PLoS ONE, 2013. Available at: https://doi.org/10.1371/journal.pone.0081926

CRUTS, Marc; VAN BROECKHOVEN, Christine. Data mining: Applying the AD&FTD mutation database to progranulin. Methods in Molecular Biology, v. 1806, n. Chapter 6, p. 81–92, 2018. Available at: https://doi.org/10.1007/978-1-4939-8559-3_6

FERRI, Cleusa P. et al. Global prevalence of dementia: a Delphi consensus study. The Lancet, v. 366, n. 9503, p. 2112–2117, 2005. Available at: https://doi.org/10.1016/S0140-6736(05)67889-0

FORREY, Christopher; DOUGLAS, Jack F.; GILSON, Michael K. The fundamental role of flexibility on the strength of molecular binding. Soft Matter, v. 8, n. 23, p. 6385–6392, 2012. Available at: https://doi.org/10.1039/c2sm25160d

GRANT, Barry J. et al. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, v. 22, n. 21, p. 2695–2696, 2006. Available at: https://doi.org/10.1093/bioinformatics/btl461

HAMOSH, Ada et al. Online Mendelian Inheritance in Man (OMIM). Human Mutation, v. 15, n. 1, p. 57–61, 2000. Available at: https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G

HESS, Berk; SPOEL, David van der; LINDAHL, Erik. Gromacs User Manual. Department of Biophysical Chemistry, 2014. Available at: https://doi.org/10.1006/imms.1993.1022

HUMPHREY, W.; DALKE, A.; SCHULTEN, K. VMD: visual molecular dynamics. Journal of molecular graphics, v. 14, n. 1, p. 33–38, 27–28, 1996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8744570. Acesso em: 9 maio. 2016.

JONSSON, Thorlakur et al. A mutation in APP protects against Alzheimer‘s disease and age-related cognitive decline. Nature, v. 488, n. 7409, p. 96, 2012. Available at: https://doi.org/10.1038/nature11283

KIMURA, Ayano; HATA, Saori; SUZUKI, Toshiharu. Alternative selection of site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid β-protein precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. Journal of Biological Chemistry, v. 291, n. 46, p. 24041–24053, 2016. Available at: https://doi.org/10.1074/jbc.M116.744722

KINOSHITA, June; CLARK, Timothy. Alzforum. Available at: https://doi.org/10.1007/978-1-59745-520-6_19

LANOISELÉE, Hélène Marie et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Medicine, 2017. Available at: https://doi.org/10.1371/journal.pmed.1002270

LONG, Justin M.; HOLTZMAN, David M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Available at: https://doi.org/10.1016/j.cell.2019.09.001

LOVELL, S. C. et al. Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins, 2003 a.

LOVELL, Simon C. et al. Structure validation by C alpha geometry: phi,psi and C beta deviation. Proteins-Structure Function and Genetics, v. 50, n. August 2002, p. 437–450, 2003 b. Available at: https://doi.org/10.1002/prot.10286

MURATORE, Christina R. et al. The familial alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Human Molecular Genetics, 2014. Available at: https://doi.org/10.1093/hmg/ddu064

NAQVI, Ahmad Abu Turab et al. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships. Current Topics in Medicinal Chemistry, v. 18, n. 20, p. 1755–1768, 2019. Available at: https://doi.org/10.2174/1568026618666181025114157

O’BRIEN, Richard J.; WONG, Philip C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci, v. 34, p. 185–204, 2011. Available at: https://doi.org/10.1146/annurev-neuro-061010-113613.Amyloid

OLIVEIRA, Clara Carolina Silva De et al. In silico analysis of the V66M variant of human BDNF in psychiatric disorders : An approach to precision medicine. PLoS ONE, v. 14, n. 4, p. e0215508, 2019.

PEREIRA, G. R. C. et al. In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, v. 120, n. 3, p. 3583–3598, 2019 a. Available at: https://doi.org/10.1002/jcb.27636

PEREIRA, Gabriel Rodrigues Coutinho et al. In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, v. 120, n. 3, p. 3583–3598, 2019 b. Available at: https://doi.org/10.1002/jcb.27636

PEREIRA, Gabriel Rodrigues Coutinho et al. In silico analyses of acetylcholinesterase ( AChE ) and its genetic variants in interaction with the anti ‐ Alzheimer drug Rivastigmine. Journal of Cellular Biochemistry, n. May, p. 1–19, 2022. Available at: https://doi.org/10.1002/jcb.30277

PEREIRA, Gabriel Rodrigues Coutinho; VIEIRA, Barbara de Azevedo Abrahim; MESQUITA, Joelma Freire De. Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 ( SOD1 ) variants related to amyotrophic lateral sclerosis. PLOS ONE, v. 1, n. 0247841, p. 1–27, 2021. Available at: https://doi.org/10.1371/journal.pone.0247841

REINHARD, Constanze; HÉBERT, Sébastien S.; DE STROOPER, Bart. The amyloid-β precursor protein: Integrating structure with biological function. Available at: https://doi.org/10.1038/sj.emboj.7600860

ROSENBERG, Roger N. et al. Genomics of Alzheimer disease: A review. Available at: https://doi.org/10.1001/jamaneurol.2016.0301

SCHWEDE, Torsten. Protein modeling: What happened to the “protein structure gap”? Structure, v. 21, n. 9, p. 1531–1540, 2013. Available at: https://doi.org/10.1016/j.str.2013.08.007

SELKOE, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiological reviews, v. 81, n. 2, p. 741–766, 2001. Available at: https://doi.org/10.1152/physrev.2001.81.2.741

WEBB, Benjamin; SALI, Andrej. Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, v. 54, n. 5.6.1-5.6.3.7, 2016. Available at: https://doi.org/10.1002/cpbi.3.Comparative

WILLIAMS, Christopher J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 2018. Available at: https://doi.org/10.1002/pro.3330

ZHANG, Yang; SKOLNICK, Jeffrey. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, v. 33, n. 7, p. 2302–2309, 2005. Available at: https://doi.org/10.1093/nar/gki524




DOI: https://doi.org/10.34117/bjdv8n6-278