Production of commercial and Amazonian strains of Pleurotus ostreatus in plant waste / Produção de linhagens comerciais e amazônicas de Pleurotus ostreatus em resíduos de plantas

Lorena Vieira Bentolila de Aguiar, Paula Romenya dos Santos Gouvêa, Sérgio Dantas de Oliveira Júnior, Ceci Sales- Campos, Larissa Ramos Chevreuil

Abstract


Pleurotus spp. have the ability to grow on a wide variety of lignocellulosic materials, which opens up a range of options to be explored. The use of locally available residues and native strains can reduce production costs, thus making fungiculture a potential economic activity in developing regions, such as northern Brazil. The aim of this research was to compare the production and nutritional characteristics of different strains of P. ostreatus, cultivated on lignocellulosic residues available in Amazonas state, Brazil. The native (474 and 1467) and commercial (542 and 885) strains were cultivated in marupá (Simarouba amara) and pine (Pinus sp.) sawdust, açaí (Euterpe oleracea) seeds and elephant grass (Pennisetum purpureum Schum.) straw. Productivity was evaluated according to biological efficiency, yield and loss of organic matter. Some physicochemical and nutritional parameters were also evaluated. In general, among the residues evaluated for mushroom cultivation, the elephant grass substrates (EG) showed better physicochemical properties in terms of moisture, ash content (minerals), hemicellulose and lignin. Additionally, the EG-based substrate resulted in the best productive parameters (yield and EB) for all strains studied, with emphasis on strain 1467, which is native to the Amazon. The basidiocarps of the native strains (474 and 1467) presented a nutritional composition that is similar to the commercial strains (885 and 542), and the mushrooms grown in EG-based residue, in general, presented the best nutritional compositions. Thus, strain 1467 of Pleurotus ostreatus, native to the Amazon, shows promise for commercial purposes, when cultivated in elephant grass residue.


Keywords


edible mushrooms, bioconversion, biological efficiency, solid fermentation, alternative substrates, basidiomycetes.

References


Aguiar, L.V.B.; Sales-Campos, C.; Gouvêa,P.R.S.; Vianez, B.F.; Dias, E.S.; Chevreuil, L.R. Substrate disinfection methods on the production and nutritional composition of a wild oyster mushroom from the Amazon. Ciência e Agrotecnologia, 2021; 45:e010321.

Alfianti, F.; Murti, A.C.; Adenan, M.B.; Sutarman. Pasteurization of coconut water and rice washing water as a supplement for extending the life of oyster mushroom cultivation media. Agritech, 2021; XXIII (12021): 1-8.

Andrade, M.C.N.; Jesus, J.P.F.; Vieira, F.R.; Viana, S.R.F.; Spoto, M.H.F.; Minhoni, M.T.A. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains. Brazilian Journal of Microbiology, 2013; 44(4): 1139-1146.

Anike, F.N.; Yusuf, M.; Isikhuemhen, O.S. Co-substrating of peanut shells with cornstalks enhances biodegradation by Pleurotus ostreatus. Journal of Bioremediation and Biodegradation, 2016; 7(1):1-7.

Annepu S. K.; Sharma, V. P.; Barh, A.; Kumar, S.; Shirur, M.; Kamal, S. Effects of genotype and growing substrate on bio-efficiency of gourmet and medicinal mushroom, Lentinula Edodes (Berk.) Pegler. Bangladesh Journal of Botany, 2019; 48(1): 129-138.

Cardoso, J.C.P.; Demenjour, P.; Louis, M.M.; Paz, M.F. Cultivo do cogumelo comestível Pleurotus ostreatus em bagaço de bocaiuva e de cana-de-açúcar pela técnica JUN-CAO. Evidência, 2013; 13(1): 31-40.

Carvalho, C.S.M.; Aguiar, L.V.B.; Sales-Campos, C.; Minhoni, M.T.A.; Andrade, M.C.N. Applicability of the use of waste from different banana cultivars for the cultivation of the oyster mushroom. Brazilian Journal of Microbiology, 2012; 819-826.

Chanakya, H.N.; Malayil, S.; Vijayalakshmi, C. Cultivation of Pleurotus spp. on a combination of anaerobically digested plant material and various agro-residues. Energy for Sustainable Development, 2015; 27: 84-92.

Chang, S.T.; Miles, P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2 ed. CRC Press, Boca Raton, Florida, 451 p. 2004.

Cueva, M.B.R.; Hernández, A.; Niño-Ruiz, Z. Influence of C/N ratio on productivity and the protein contents of Pleurotus ostreatus grown in differents residue mixtures. Revista de La Facultad de Ciencias Agrarias, 2017; 49(2): 331-344.

Ferreira, D.F. Sisvar: a computer analysis system to fixed effects split plot type designs. revista brasileira de biometria, [S.l.], v. 37, n. 4, p. 529-535, dec. ISSN 1983-0823. 2019.

Furlani R.P.Z.; Godoy, H.T. Valor nutricional de cogumelos comestíveis: uma revisão. Revista do Instituto Adolfo Lutz, 2005; 64(2): 149-154.

Gaitán-Hernández, R.; Zavaleta, M.A.B.; Aquino-Bolaños, E.N. Productivity, physicochemical changes, and antioxidant activity of shiitake culinary- medicinal mushroom Lentinus edodes (Agaricomycetes) cultivated on lignocellulosic residues. International Journal of Medicinal Mushrooms, 2017; 19(11): 1041-1052.

Gume, B.; Muleta, D.; Abate, D. Evaluation of locally available substrates for cultivation of oyster mushroom (Pleurotus ostreatus) in Jimma, Ethiopia. African Journal of Microbiology Research, 2013; 7(20):2228-2237.

Haldar, D.; Purkait, M.K. Thermochemical pretreatment enhanced bioconversion of elephant grass (Pennisetum purpureum): insight on the production of sugars and lignin. Biomass Conversion and Biorefinery, 2022; 12: 1125–1138.

IAL - Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos – São Paulo: 4ª Edição. 1ª Edição Digital, 1020 p., 2008.

Jayasinghearachchi, H.S.; Seneviratne, G. Can mushrooms fix atmospheric nitrogen? Journal of Biosciences, 2004; 29(3): 293-296.

Jeznabadi, E.K.; Jafarpour, M.; Eghbalsaied, S. King oyster mushroom production using various sources of agricultural wastes in Iran. International Journal of Recycling of Organic Waste in Agriculture, 2016; 5(17): 17-24.

Jeznabadi, E.K.; Jafarpour, M.; Eghbalsaied, S.; Pessarakli, M. Effects of various substrates and supplements on king oyster (Pleurotus ostreatus). Compost Science & Utilization, 2017; 25(S1): S1-S10.

Koutrotsios, G.; Kalogeropoulos, N.; Stathopoulos, P.; Kaliora, A.C.; Zervakis, G.L. Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World Journal of Microbiology and Biotechnology, 2017; 33: 1-14.

Lima, M.C.D.; Barreto-Garcia, P.A.B.; Sanquetta, C.R.; Novaes, A.B.; Melo, L.C. Biomass and carbon stock from Pinus caribaea var. hondurensis under homogenus stands in southwest Bahia, Brazil. Ciência Rural, 2016; 46(6):957-962.

Lima, E.C.S.; Manhães, L.R.T.; Santos, E.R.; Feijó, M.B.S.; Sabaa-Srur, A.U.O. Optimization of the inulin aqueous extraction process from the açaí (Euterpe oleracea, Mart.) seed. Food Science and Technology, 2021; 41(4): 884-889.

Mahari, W.A.W.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; Le, Q.V.; Show, P.L; Chen, W.-H.; Lam, S.S. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry, Journal of Hazardous Materials, 2020; 400: 123156.

Maranho, A.S.; Paiva, A.V. Produção de mudas de Physocalymma scaberrium em substratos compostos por diferentes porcentagens de resíduo orgânico de açaí. Revista Floresta, 2012; 42(2):399-408.

Melanouri, E.M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part II: Effect on productivity and quality of carposomes. Carbon Resources Conversion, 2022; 5(1): 52-60.

Monção F.P.; Rocha Júnior, V.R.; Silva, J.T.; Jesus, N.G.; Marques, O.F.C.; Rigueira, J.P.S.; Sales, E.C.J.; Silva Jr., A.A.G.; Alves, D.D.; Carvalho, C.C.C.; Gomes, V.M.; Leal, D.B. Nutritional value of BRS capiaçu grass (Pennisetum purpureum) silage associated with cactus pear. Iranian Journal of Applied Animal Science, 2020; 10(1): 25-29.

NEPA - Núcleo de Estudos e Pesquisas em Alimentação. Tabela de Composição de Alimentos/TACO-UNICAMP. Campinas, São Paulo. 4ª ed. 164p. 2011.

Otieno, O.D.; Mulaa, F.J.; Obiero, G.; Midiwo, J. Utilization of fruit waste substrates in mushroom production and manipulation of chemical composition. Biocatalysis and Agricultural Biotechnology, 2022; 39: 102250.

Öztürk, C.; Atila, F. Changes in lignocellulosic fractions of growing substrates during the cultivation of Hypsizygus ulmarius mushroom and its effects on mushroom productivity. Scientia Horticulturae, 2021; 288(110403): 1-6.

Pedra, W.N.; Marino, R.H. Cultivo axênico de Pleurotus spp. em serragem da casca de coco (Cocos nucifera linn.) suplementada com farelo de arroz e/ou de trigo. Arquivos do Instituto Biológico, 2006; 73(2): 219-225.

Pereira, J.O.; De Souza, A.Q.L.; De Souza, A.D.L.; De Castro, S.F.; De Oliveira, L.A. Overview on biodiversity, chemistry, and biotechnological potential of microorganisms from the Brazilian Amazon. In: de Azevedo, J.; Quecine, M. (Ed.). Diversity and Benefits of Microorganisms from the Tropics, 71-103. Springer International Publishing. 2017.

Piña-Guzmán, A.B.; Nieto-Monteros, D.A.; Robles-Martínez, F. Utilización de residuos agrícolas y agroindustriales en el cultivo y producción del hongo comestible seta (Pleurotus spp.). Revista Internacional de Contaminación Ambiental, 2016; 32: 141-151.

Ríos, M.P.; Hoyos, J.L.Y; Mosquera, S.A. Evaluación de los parámetros productivos de la semilla de Pleurotus ostreatus propagada en diferentes medios de cultivo. Biotecnología en el Sector Agropecuario y Agroindustrial, 2010; 8(2): 86-94, 2010.

Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 2018; 5(1): 1-15.

Sales-Campos, C.; Andrade, M.C.N. Aproveitamento de resíduos madeireiros para o cultivo do cogumelo comestível Lentinus strigosus de ocorrência na Amazônia. Acta Amazonica, 2011; 41(1): 1-8.

Sales-Campos, C.; Araújo, L.M.; Minhoni, M.T.A.; Andrade, M.C.N. Physico-chemical analysis and centesimal composition of Pleurotus ostreatus mushroom grown in residues from the Amazon. Ciência e Tecnologia de Alimentos, 2011; 31(2): 456-461.

Shin, S.K.; Ko, Y.J.; Hyeon, J.E.; Han, S.O. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. Bioresource Technology, 2019; 289(121728): 1-8.

Singh, M.P. Biodegradation of lignocellulosic wastes through cultivation of Pleurotus sajor–caju. Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 2000, p. 517-521.

Singh, A.; Singh, S. Nutritional and health importance of fresh and dehydrated oyster mushroom (Pleurotus florida). Journal of Current Research in Food Science, 2021; 2(2):10-14.

Siqueira, F.G.; Martos, E.T.; Silva, R.; Dias E.S. Cultivation of Pleurotus sajor-caju on banana stalk and Bahia grass based substrates. Horticultura Brasileira, 2011; 29(2):199-204.

Soares, A.M.S.; Sotão, H.M.P.; Medeiros, P.S.; Gilbertoni, T.B. Riqueza de fungos poliporoides (Agaricomycetes, Basidiomycota) em uma floresta ombrófila densa no Amapá, Amazônia Brasileira. Boletim do Museu de Biologia Mello Leitão, 2014; 35: 5-18.

Souza, M.M.; Bufalino, L.; Gomes, L.G. Caracterização da madeira de marupá (Simarouba amara Aubl, Simaroubaceae) visando utilização na indústria moveleira. Brazilian Journal of Development, 2020; 6(12): 98163-98185.

Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análises de solo, plantas e outros materiais. Porto Alegre, UFRGS.1995, 88p.

Toro, G.V.; Ramírez-Ortiz, M.E.; Flores-Ramírez, G.; Costa-Manzano, M.R.; Robles-Martínez, F.R.; Garín-Aguilar, M.E.; Leal-Lara, H. Effect of Yucca schiedigera bagasse as substrate for oyster mushroom on cultivation parameters and fruit body quality. Revista Mexicana de Ingeniería Química, 2018; 3(17): 835-846.

Van Soest, P.J. Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 1963; 46: 829-835.

Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in acid detergent fiber with permanganate. Journal of the Association of Official Agricultural Chemists, 1968; 51: 780-785.

Vogelmann, E.S.; Prevedello, J.; Reichert, J.M. Origem dos compostos hidrofóbicos e seus efeitos em florestas de Pinus e Eucalyptus. Ciência Florestal, 2015; 25(4):1067-1079.

Yamashita, S.; Hirose, D. Phylogenetic analysis of Ganoderma austral complex in a Bornean tropical rainforest and implications for mechanism of coexistence of various phylogenetic types. Fungal Ecology, 2016; 24: 1-6.




DOI: https://doi.org/10.34117/bjdv8n6-299