Effect of sodium nitrate concentration on the lipid content of Chlorella vulgaris / Efeito da concentração de nitrato de sódio no conteúdo lipídico de Chlorella vulgaris

Authors

  • José William Alves da Silva Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Hudson Damasceno Maia
  • Rebeca Larangeira de Lima
  • Igor Gabriel Rodrigues Ferreira Gomes
  • Ana Luzia Assunção Cláudio de Araújo
  • Anderson Alan da Cruz Coelho
  • Leonardo Freitas Galvão de Albuquerque
  • Carlos Henrique Profírio Marques
  • Rafael Lustosa Maciel
  • Francisco Hiran Farias Costa

DOI:

https://doi.org/10.34117/bjdv5n12-392

Keywords:

Biomass, Microalgae, Cell, Lipid.

Abstract

Microalgae can be used in the large-scale production of biofuels because of their ease of cultivation, high growth speed and high lipid content. Alterations in cultivation conditions change their cell composition and may affect the production of biomass, lipids, proteins, carbohydrates and pigments. This study evaluated the biomass and lipid production of Chlorella vulgaris cultivated with different concentrations of sodium nitrate in Guillard f/2 medium. Five treatments were performed in triplicate, with 15, 30, 45, 60 and 75 mg L-1 of sodium nitrate, keeping constant the concentrations of the other nutrients in Guillard f/2 medium. The stationary cultivation was performed in 12 L containers and was monitored daily by cell density with the determination of the nitrate concentration performed at the beginning, middle and end of the cultivation. The separation of the cells from the culture medium was performed by chemical flocculation (2N NaOH). The biomass was dried in a drying oven and quantified. Both 15 and 30 mg L-1 of sodium nitrate treatments with a biomass production of 4.35 ± 0.46 and 3.84 ± 0.36 g (p<0.05), respectively, and  total lipids of 1.26 ± 0.22 and 1.41 ± 0.24 g (p<0.05), respectively, were significantly higher than the other treatments. The reduction of sodium nitrate in the culture medium resulted in a better recovery of biomass and production of lipids in C. vulgaris.

References

AZMA, M.; MOHAMED, M. S.; MOHAMAD, R.; RAHIM, R. A.; ARIFF, A. B. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, v. 53, n. 2, p. 187-195, 2011.

BLIGH, E.G.; DYER, W. J.A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, v. 37, n. 8, p. 911-917, 1959.

CHEN, C. Y.; YEH, K. L.; AISYAH, R.; LEE, D. J.; CHANG, J. S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, v. 102, n. 1, p. 71-81, 2011a.

CHEN, M.; TANG, H.; MA, H.; HOLLAND, T. C.; SIMON, K. Y.; SALLEY, S. O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, v. 102, n. 2. p. 1649-1655, 2011b.

CHENG, L.; ZHANG, L.; CHEN, H.; GAO, C. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, v. 50, n. 3, p. 324-329, 2006.

CHISTI, Y. Biodiesel from microalgae. Biotechnology Advances,v. 25, n. 3, p. 294-306, 2007.

CHO, S.; LUONG, T. T.; LEE, D.; OH, Y-K.; LEE, T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technology, v. 102, n. 18, p. 8639-8645, 2011.

COLLA, L. M.; REINEHR, C. O.; REICHERT, C.; COSTA, J. A. V. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, v. 98, n. 7, p. 1489-1493, 2007.

CONVERTI, A.; CASAZZA, A. A.; ORTIZ, E, Y.; PEREGO, P.; BORGHI, M. D. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, v. 48, n. 6, p. 1146-1151, 2009.

COSTA, J. A. V.; RADMANN, E. M.; CERQUEIRA, V. S.; SANTOS, G. C.; CALHEIROS, M. N. Perfil de ácidos graxos das microalgas Chlorella vulgaris e Chlorella minutissima cultivadas em diferentes condições. Alimentos e Nutrição Araraquara, v. 17, n. 4, p. 429-436, 2006.

DEVAPPA, K. R.; MAES, J.; MAKKAR, H. P. S.; De GREYT, W.; BECKER, K. Qualityof biodiesel prepared from phorbolester extracted Jatropha curcas oil. Journal of the American Oil Chemists' Society, v. 87, n. 6, p. 697-704, 2010.

DOAN, T. T. Y.; SILVALOGANATHAN, B; PHILIP, J. Screening of marine microalgae for biodiesel feedstock. Biomass and Bioenergy, v. 35, n. 7, p. 2534-2544, 2011.

DRAGONE, G.; FERNANDES, B. D.; ABREU, A. P.; VICENTE, A. A.; TEIXEIRA, J. A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, v. 88, n. 10, p. 3331-3335, 2011.

FENG, D.; CHEN, Z.; XUE, S.; ZHAND, W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, v. 102, n. 12, p. 6710-6716, 2011a.

FENG, Y; LI, C.; ZHANG, D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, v. 102, n. 1, p. 101-105, 2011b.

FIERRO, S.; SÁNCHEZ-SAAVEDRA, M. P.; COPALCÚA, C. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresource Technology, v. 99, n. 5, p. 1274-1279, 2008.

GAO, C.; ZHAI, Y.; DING, Y.; WU, Q. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, v. 87, n. 3, p. 756-761, 2010.

GORS, M.; SCHUMANN, R.; GUSTAVS, L.; KARSTEN, U. The potential of ergosterol as chemotaxonomic marker to differentiate between ‘‘Chlorella’’ species (Chlorophyta). Journal of Phycology,v. 46, n. 6, p.1296-1300, 2010.

GUEDES, A. C.; MEIRELES, L. A.; AMARO, H. M; MALCATA, F. X. Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. Journal of the American Oil Chemists' Society,v. 87, n. 7, p. 791-801, 2010.

GUILLARD, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animal. SMITH, W. L.; CHANLEY, M. H. (Eds.). New York: Plenum Publishing, p. 29-60, 1975.

HERNADEZ, J-P.; de BASHAN, L. E.; RODRIGUEZ, D. J.; RODRIGUEZ, Y.; BASHAN, Y. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. European Journal of Soil Biology, v. 45, n. 1, p. 88-93, 2009.

JANCZYK, P.; FRANKE, H.; SOUFFRANT, W.B. Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats. Animal Feed Science and Technology, v. 132, n. 1-2, p. 163-169, 2007.

JIANG, L.; LUO, S.; FAN, X.; YANG, Z.; GUO, R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, v. 88, n. 10, p. 3336-3341, 2011.

JIANG-MING, L.; LI-HUA, C.; XIN-HUA, X.; LIN, Z.; HUAN-LIN, Z. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, v. 101, n. 17, p. 6797-6804, 2010.

KONG, Q.; ZHU, L.; SHEN, X. The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. Journal of Hazardous Materials, v. 178, n. 1-3, p. 282-286, 2010.

LI, Y.; CHEN, Y-F.; CHEN, P.; MIN, M.; ZHOU, W.; MARTINEZ, B.; ZHU, J.; RUAN, R. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, v. 102, n. 8, p. 5138-5144, 2011.

LIM, S. L.; CHU, W. L.; PHANG, S. M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, v. 101, n. 19, p. 7314-7322, 2010.

LOURENÇO, S. O. Cultivo de microalgas marinhas: princípios e aplicações. São Carlos: Rima, v. 1, p. 295-315, 2006.

MACÍAS-SÁNCHEZ, M. D.; MANTELL, C.; RODRÍGUEZA, M.; MARTÍNEZ DE LA OSSAA, E.; LUBIÁNB, L. M.; MONTEROB, O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll ? from Dunaliella salina. Talanta, v. 77, n 30, p. 948-952, 2009.

MARKOU, G.; GEORGAKAKIS, D. Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, v. 88, n. 10, p. 3389–3401,2011.

MATA, T. M.; MARTINS, A. A.; CAETANO, N. S. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Reviews, v.14, n. 1, p. 217-232, 2010.

MATOS, L. J. B. L.; GONÇALVES, L. R. B.; CARTAXO, S. J. M.; ARAUJO, G. S.; FARIAS, W. R. L.Utilização de vários métodos de extração de óleo da microalga Chlorella vulgaris assistida por ultrassom. In: SINAFERN 2009 – XVII Simposio Nacional de Bioprocessos, 2009, Natal, RN. [Anais...]. Natal: [s.n.], 2009.

MEINERZ, L. I.; BALLESTER, E. L.C.; VAZ, L. J.; WASIELESKY, W. JR. Efeitos da temperatura sobre a absorção de nutrientes e crescimento celular da microalga Thalassiosira weissflogii. Atlântica, v. 31, n. 2, p. 209-212, 2009.

MORAIS, M. G.; COSTA, J. A. Isolation and selection of microalgae from coal fired

thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, v. 48, n. 7, p. 2169-2173, 2007.

MULBRY, W.; KONDRAD, S.; BUYER, J.; LUTHRIA, D. L. Optimization of an oil extraction process for algae from the treatment of manure effluent. Journal of the American Oil Chemists' Society, v. 86, n. 9, p. 909-915, 2009.

OHSE, S.; DERNER, R. B.; OZÓRIO, R. A.; BRAGA, M. V. C.; CUNHA, P.; LAMARCA, C. P.; SANTOS, M. E. Crescimento de microalgas em sistema autotrófico estacionário. Revista Biotemas, v. 21, n. 2, p. 7-18, 2008.

PEREIRA, J. L.; BRANCO, L. H. Z. Influência do nitrato e fosfato no crescimento de Schizomeris leibleinii Kützing (Chaetophorales, Chlorophyta). Acta Botanica Brasilica, v. 21, n. 1, p. 155-162, 2007.

PHUKAN, M. M.; CHUTIA, R. S.; KONWAR, B. K.; KATAKI, R. Microalgae Chlorella as a potential bio-energy feed stock. Applied Energy, v. 88, n. 10, p. 3307-3312, 2011.

RADMANN, E. M.; COSTA, J. A. V. Conteúdo lipídico e composição de ácidos graxos de microalgas expostas aos gases CO2, SO2 e NO. Química Nova, v. 31, n. 7, p. 1609-1612, 2008.

RODOLFI, L.; ZITTELLI, G. C.; BASSI, N.; PADOVANI, G.; BIONDI, N.; BONINI, G.; TREDICI, M. R.Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, v. 102, n. 1, p. 100-112, 2009.

SCOTT, S. A.; DAVEY, M. P.; DENNIS, J. S.; HORST, I.; HOWE, C. J.; SMITH, D. J. L.; SMITH, A. G. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology,v. 21, n. 3, p. 277-286, 2010.

SEBASTIEN, N. Y.; GRANJA, R. P..Cultivo de Scenedesmus: alimento vivo para a manutenção de organismos planctônicos e implementação na dieta humana. Revista Varia Scientia, v. 05, n. 10, p. 113-121, 2006.

SUBHADRA, B., EDWARDS, M. An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, v. 38, n. 9, p. 4897-902, 2010.

SYDNEY, E. B.; SILVA, T. E.; TOKARSKI, A.; NOVAK, A. C.; CARVALHO, J. C.; WOICIECOHWSKI, A. L.; LARROCHE, C.; SOCCOL, C. R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, v. 88, n. 10, p. 3291-3294, 2011.

VOLKMANN, H.; IMIANOVSKY, U.; OLIVEIRA, J. L. B.; ANNA, E. S. S. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology, v. 39 n. 1, p. 98-101, 2008.

WANG, H. M.; PAN, J. L.; CHEN, C. Y.; CHIU, C. C.; YANG, M. H.; CHANG, H. W.; CHANG, J. S. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochemistry, v. 45, n. 12. p. 1865-1872, 2010.

WIDJAJA, A.; CHIEN, C. C.; JU,Y. H. Study of increasing lipid production from freshwater microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, v. 40, n. 1, p. 13-20, 2009.

YEESANG, C.; CHEIRSILP, B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, v. 102, n. 3, p. 3034-3040, 2011.

ZENG, X.; DANQUAH, M. K.; CHEN, X. D.; LU, Y. Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, v. 15, n. 6, p. 3252-3260, Aug 2011.

Downloads

Published

2020-03-26

How to Cite

Silva, J. W. A. da, Maia, H. D., Lima, R. L. de, Gomes, I. G. R. F., Araújo, A. L. A. C. de, Coelho, A. A. da C., Albuquerque, L. F. G. de, Marques, C. H. P., Maciel, R. L., & Costa, F. H. F. (2020). Effect of sodium nitrate concentration on the lipid content of Chlorella vulgaris / Efeito da concentração de nitrato de sódio no conteúdo lipídico de Chlorella vulgaris. Brazilian Journal of Development, 5(12), 33506–33524. https://doi.org/10.34117/bjdv5n12-392

Issue

Section

Original Papers