What is the adequate number of students per class for safety in swimming lessons? Reflection by teachers from Rio de Janeiro, Brazil

Qual o quantitativo adequado de alunos por turma para segurança na aula de natação? Reflexão de professores do Rio de Janeiro, Brasil

DOI:10.34117/bjdv8n1-540

Recebimento dos originais: 07/12/2021
Aceitação para publicação: 31/01/2022

Marcelo Barros de Vasconcellos
Adjunct Professor at the University of the State of Rio de Janeiro - UERJ, specialist in aquatic activities - FAMATH, Master in Collective Health - UFF, PhD from UFRJ, lifeguard and instructor of the Brazilian Society of Aquatic Rescue (SOBRASA) and the International Federation of Rescue (ILS), creator of the Swimming + Safe and Hydrogymnastics + Safe methods, author of the book Monitored Swimming: Tests from Aquacity to Advanced Level
Corresponding author: professormarcelobarros@gmail.com

Marcelo Garcia Massaud
Graduated in Physical Education - UGF, specialist in Sports Psychology - UGF, Master in Human Motricity Science - UCB, FAETEC Professor, since 1998, professor at Estácio de Sá University, since 2014 and author of several books and DVDs on Swimming

ABSTRACT
Drowning is a global problem that shouldn't affect anyone. Learning to swim can be an ally in preventing drowning, however, the place where classes take place also requires attention so that students are safely exposed to the pool. The objective of this study is to reflect on the appropriate number of students per class, in swimming lessons so that there is a safe class. The methodology used was cross-sectional, multi-method research, carried out in two stages, the first (n 107), interviewing swimming teachers from academies in the State of Rio de Janeiro; the second (n 44) was carried out online, with a self-answered questionnaire by swimming teachers who are part of the pool + safe group. Qualitative data analysis was performed through content analysis. The results show that there are at least 10 variables that influence teachers in deciding how many students each class can have. These ten items were grouped into three groups of responses that are subdivided into: 1. Students (stature, aquacity and medical clearance); 2. Teachers (assistant in the water, prevention course in the aquatic area and experience); and 3. pool environment (depth reducer, handrail on the edge, life guard and teaching material). The professionals involved in deciding how many students, per class, should put in the pool, at each time, need to evaluate each variable to later be able to combine quality, safety and quantity in each swimming class. In this sense, student safety needs to be the protagonist in this scenario, so that no incident occurs during swimming lessons. It is suggested that
the teacher constantly reassess their aquatic environment to verify if these factors, which are not included in the test of how many students each class can have, are preventing their class from having a safe + class.

Keywords: drowning, prevention, swimming + safe, aquacity, class + safe.

RESUMO

O afogamento é um problema global que não deveria acometer à ninguém. Aprender a nadar pode ser um aliado na prevenção de afogamentos, no entanto, o local onde acontecem as aulas também requer atenção para que os alunos sejam expostos a piscina de forma segura. O objetivo deste estudo é refletir sobre o quantitativo de alunos adequado por turma, nas aulas de natação para que haja uma turma + segura. A metodologia usada foi de pesquisa transversal, multi-métodos, feita em duas etapas, a primeira (n 107), entrevistou professores de natação de academias do Estado do Rio de Janeiro; a segunda (n 44), foi realizada de forma online, com questionário autorrespondido por professores de natação que fazem parte do grupo piscina + segura.

A Análise de dados qualitativos foi realizada por meio da análise de conteúdo. Os resultados mostram que existem pelo menos 10 variáveis que influenciam os professores na decisão de quantos alunos cada turma pode ter. Estes dez itens foram reunidos em três grupos de respostas que se subdividem em: 1. Alunos (estatura, aquacidade e liberação médica); 2. Professores (auxiliar dentro d’água, curso de prevenção na área aquática e experiência); e 3. ambiente da piscina (profundidade rasa, corrimão na borda, guarda-vidas e material didático). Os profissionais envolvidos na decisão de quantos alunos, por turma, devem pôr na piscina, em cada horário, precisam avaliar cada variável para posteriormente conseguir aliar a qualidade, segurança e a quantidade em cada turma de natação. Neste sentido, a segurança do aluno precisa ser protagonista neste cenário, para que nenhum incidente ocorra durante as aulas de natação. Sugere-se que o professor faça uma reavaliação do seu ambiente aquático constantemente para verificar se esses fatores, que não são contemplados no teste de quantos alunos cada turma pode ter estão impedindo que a sua aula tenha uma turma + segura.

Palavras Chaves: afogamento, prevenção, natação + segura, aquacidade, turma + segura.

INTRODUCTION

Drowning is a threat to global public health, affecting countries of all income groups (PEDEN ET AL., 2019) which shows that anyone can drown, but no one should (MEDDINGS ET AL., 2021). Furthermore, drowning is a problem that has not received the necessary attention and disproportionately impacts children (VASCONCELLOS & MACEDO, 2021).

Learning to swim can be an ally in preventing drowning (WILLCOX-PIDGEON ET AL., 2020), when it is carried out through a structured program to develop water skills (PEDEN & FRANKLIN, 2020), therefore, children must be taught to swim as soon as
possible (WHO, 2017) to know how to face any difficulties in the aquatic environment (MOSEK ET AL., 2020), however, this requires careful planning, since children will be exposed to the pool, which also represents a risk of drowning (GUEVARRA ET AL., 2021).

In Brazil, to prevent drowning, through swimming lessons, a teaching methodology called swimming + safe was created (VASCONCELLOS ET AL., 2017) that values, primarily, student safety and full adaptation to the aquatic environment with improvement of aquacity (VASCONCELLOS, 2019a). This methodology considers aquacity as the degree of adaptation of a person to the aquatic environment and its conditions of self-sustainability, mastery of aquatic breathing, displacement in the aquatic environment, body awareness and little chance of drowning (VASCONCELLOS, 2019b). It is an approach that shows, in swimming lessons, multiple actions that may prevent drowning, trauma or situations that impair the pedagogical progression for learning the four strokes (VASCONCELLOS, 2020b).

One of the items that Swimming + Safe proposes is that professionals who teach swimming should be careful when planning the number of students per class, so that the class, in addition to meeting the students' goals, is safe for practitioners.

Safety in swimming lessons is a relevant topic to the point of generating the development of a material on safety standards in swimming lessons, in 2003 (resolution 026/03), submitted for review in 2019 (resolution 106/19), by the Regional Council of Physical Education (CREF) of the 1st region, Rio de Janeiro. These standards were published in the resolutions to establish the maximum number of clients/students in the different services provided by Physical Education Professionals (CREF, 2019).

Creators of the Pool + Safe program, from the Brazilian Society of Water Rescue (SOBRASA), already addressed this issue, as there was concern about the possible disproportion between the number of students for each teacher in the classes and the impact of this, on the safety of each class of swimming. The authors investigated the theme to start a reflection and subsequent discussion on which amount would be adequate to avoid drowning and/or aquatic accidents. At the time, the researchers' objective was to identify which factors influenced swimming teachers to decide the appropriate number of students per class so that the class was safer (VASCONCELLOS ET AL., 2018).

The objective of this study is to reflect on the adequate number of students per class, in swimming lessons so that there is a class + safe and also to propose a diagnostic test of the number of students per class + safe in the swimming class.
METHODOLOGY

The methodology used was cross-sectional, multi-method research, carried out in two stages, the first (n 107), interviewing swimming teachers from academies in the State of Rio de Janeiro; the second (n. 44) was carried out online, with a self-answered questionnaire by swimming teachers who are part of the Pool + Safe group, created by SOBRASA. In both surveys, there was an answer about the adequate number of students in swimming, for each age group and which factors influenced to decide the adequate number mentioned (VASCONCELLOS ET AL., 2018). Qualitative data analysis was performed through content analysis.

RESULTS

The results on which variables influenced these teachers surveyed in the decision of how many students per class should have were gathered in three groups of answers that relate to the referring factors: 1) students (stature, aquacity and medical clearance), 2) teachers (assistant in the water, prevention course in the aquatic area, experience) and 3) pool environment (depth reducer, handrail on the edge, lifeguards and teaching material) as shown (figure 1) (VASCONCELLOS ET AL., 2018).

Figure: Hierarchy of components that influence teachers in deciding how many students per class they should have in the safe + class.

The items that can influence the decision of how many students should have in each safe + class will be discussed below, separately in three groups.
1 STUDENT

1.1 Stature

The student's height measurement is related to age and how deep the pool can be for them. As age increases, stature accompanies growth and the number of teachers per class tends to fall. This is seen in the CREF resolution itself on the maximum number of students per client/students, where it appears that the council's recommendation is the younger the student (the lower the student), the more people need to support the class (CREF, 2019). The document exemplifies that classes with children aged 2 years and 1 month to 3 years old may have up to 5 (five) clients/students per Physical Education professional, in children aged 4 to 5 years old they may have up to 8 (eight), in children from 6 to 7 years of age the number rises to up to 15 (fifteen); in children from 08 years of age, in adolescents and adults, up to 20 (twenty). It is noticed that there is a tendency of increase in the number of students as the age increases. In fact, the stature of the student will increase in parallel with his age, and with that, it is easier to be able to stand in the pool depending on his stature. By standing, it will be possible to keep the head above the water, avoid inhaling the water, inspect the environment and swim safely (SCHNITZLER ET AL., 2015).

1.2 Aquacity

On the first day that the student enters the pool, the teacher must perform the aquacity level test, that is, verify how much acclimated to the aquatic environment he is. The test was initially proposed almost two decades ago (VASCONCELLOS & SANTOS, 2004), underwent updates (VASCONCELLOS, 2015; VASCONCELLOS ET AL., 2017) and was consolidated (VASCONCELLOS ET AL., 2019) after receiving suggestions when it was presented in the world congress of aquatic rescue held in Canada (VASCONCELLOS ET AL., 2017). The test seeks to identify the level of aquacity and consists of 10 items, which are worth one point each, when performed correctly. Students who scored 0–2 points are considered to have a very poor aquacity level; 3–4 points, poor aquacity; 5–6 points, medium aquacity; 7–8 points good aquacity and; 9–10 points, excellent aquacity (attached figure). The test is part of the swimming +Safe methodology, which primarily values student safety and familiarization with the aquatic environment before teaching the four strokes. It is an approach that highlights, in the first months of swimming lessons, actions that may prevent drowning, trauma or situations that impair the learning of the four swimmers (VASCONCELLOS, 2019b). In addition, the CREF
resolution also draws attention to verifying the water level of the student, from 4 to 7 years old, to determine the number of students per class. The document mentions that initial care must be taken to verify the child's ability to return to the standing position in the event of an eventual fall (CREF, 2019), item 5 of the aquacity test. The aquacity test was designed for children from 3rd childhood (7 to 11 years old), later it started to be used with 2nd childhood 3–6 years old and today it is indicated as a test for experimental class or for the first day of class beginners in swimming aged 3 years onwards and also to monitor their development (VASCONCELLOS, 2019b). Remember that the 1st day of swimming lessons, the assessment, cannot be traumatizing. The concept in this diagnostic assessment is self-competition (the student being compared to himself) and not hetero-competition (the student compared to other former students in swimming). What is desired is a photograph of the current reality, something transversal, where the day of entry into swimming is recorded. This assessment should be done in a playful, relaxed and welcoming way. When realizing that the student cannot perform any of the items proposed in the test, the teacher will not embarrass the student. Will handle it naturally. After a few weeks, a new formative assessment will be carried out to compare the student's evolution (VASCONCELLOS, 2021). Improved aquacity will help to acquire aquatic competence, which is defined as the sum of all water movements that help to prevent drowning and that are associated with the individual's knowledge, skills and values (MORENO-MURCIA ET AL., 2020). Thus, it is clear that there is a relationship between the degree of water content and the number of students per class. The lower the student's aquacity, the more care he requires and the fewer students should be allocated to this class.

1.3 Medical Clearance (Certificate)

The student must present a document that certifies that he is fit to practice swimming. Furthermore, it is important for the teacher to take an anamnesis to collect data on previous physical activities, history of family diseases, cardiovascular events related to the practice of sports and their health status (if they use any medication, if they have had surgery, if they feel any pain, if you have any restrictions, if you have high blood pressure, if you have a heart condition, if you have had Covid-19, etc.) safety of classes (VASCONCELLOS, 2020). In fact, the swimming teacher needs to know the students' previous aquatic experiences (PEDEN & FRANLLIN, 2020), in addition, the student's maturity will be verified in the interview and can also be a factor to be considered when
making a decision on the amount of water students. There are students who understand and perform activities with a simple explanation and others who depend on more help, more time and attention from the teacher. If the class has students with disabilities, it will require new calculations of number of students. According to the CREF resolution, in case the client/student does not have developed aquacity, the class must be individualized with the Physical Education Professional (CREF, 2019).

2 TEACHER

2.1 Help in the water

If the institution provides an intern or another teacher to collaborate as support in the pool, the class may have a greater number of students. This is seen in CREF's own resolution on helping an intern in the pool, where it appears that the institution's recommendation is to increase the number of students when there is an intern available to support the swimming class (CREF, 2019). The document exemplifies that in groups of children from 4 to 5 years old, if there is participation in the work of a Physical Education intern, the number of 8 (eight) client/student per Physical Education Professional can be increased to 12 (twelve), in children from 6 to 7 years old, it can be increased from 15 (fifteen) to 20 (twenty) and, in children from 8 years old, it can be increased from 20 (twenty) clients/students per Physical Education Professional to 25 (twenty-five) (CREF, 2019). It is noticed that there is a tendency of increase in the number of students as there are more assistants to assist during the class.

2.2 Prevention course in the aquatic area

The aquatic environment has particularities that only professionals who have taken courses on drowning prevention or in aquatic emergencies can understand. The instruction on the prevention of aquatic accidents will awaken in the swimming teacher an awareness of the prevention of aquatic accidents. The teacher needs to understand the particularities of water activities and the pool, such as the importance of guardrails in the pool, gates with automatic closing, anti-trapping hair drains, pump off button, presence of pool lifeguards, safety standards for entering and exiting the pool (VASCONCELLOS, 2020b). In addition, courses on prevention and aquatic emergencies prepare the teacher to know how to differentiate the degrees of drowning and their respective forms of action, such as preventing/rescuing seizures or spinal cord injuries, in case someone has been injured by diving in a shallow area. The United Nations (UN) considers it important that
everyone has aquatic safety classes (MEDDINGS ET AL., 2021). In Brazil, the Sociedade Brasileira de Salvamento Aquático (SOBRASA) offers free courses for teachers and has in one of its campaigns measures focused on the prevention of aquatic accidents, such as the one with the motto “know how to act” in situations of aquatic emergencies (Vasconcellos, 2020b). For Vasconcellos & Macedo, 2021, prevention should start out of the water and continue in the water.

2.3 Aquatic Experience

Knowing how to position yourself properly in the pool also demonstrates the teacher's level of experience, being a fundamental item for safety during classes. For Peden & Franklin, 2020 it is necessary to improve swimming teachers' skills, including empathy, to manage and prevent negative aquatic experiences during swimming instruction. Whether inside or outside the pool, the teacher needs to have a viewing angle that allows him to see all the students (never have his back to them). The smaller the area of vision during the class (a pillar type blind spot, etc.) the greater the risk of an accident happening and not being prevented. If the teacher has no experience in the aquatic environment, he will certainly need more support for his classes and should have a smaller number of students until he acquires confidence and experience in the aquatic environment to make the class safer. The tendency is that the lower the teacher's experience, the lower the number of students allocated to the class. Another important factor associated with the professional's experience is to use a teaching method suitable for some aspects, such as; water of the students, characteristics of the facilities (deep or shallow), in the use or not of teaching materials, in the selection of activities/exercises compatible with the water and interest of the students and others.

3 SWIMMING POOL

3.1 Depth with shallow area

A 1.20 m pool allows an adult to stand, however it will be deep for a 1 m child. If the pool does not offer conditions for the student to stand with his shoulders out of the water, not deep for the student, greater care must be taken. This is perceived in the CREF resolution itself on the depth where the class is held. It appears that the CREF recommendation is to only increase the number of students when the depth is smaller (CREF, 2019). The document exemplifies that in groups of children from 4 to 5 years of age, there may be up to 8 (eight) clients/students per Physical Education professional, in
children from 6 to 7 years of age, it can be increased from 15 (fifteen) to 20 (twenty), as long as the pool used maintains a maximum water level of 1.30 m and in case of using a 1 m deep pool, it can be increased to 12 (twelve). In children from 08 years of age, it can be increased from 20 (twenty) clients/students per Physical Education Professional to 25 (twenty five) as long as the pool used maintains the water level at a maximum of 1, 40 m. It is noticed that there is a direct relationship between the depth of the pool and the number of students per swimming class. The lower the depth, the greater the number of students that can be allocated per class (VASCONCELLOS, 2021).

3.2 Handrail on the edge

The internal handrail used as an accessory in the pool allows the student to support himself in a practical and safe way to rest and to perform kicking exercises while holding the bar. Even in small children, the handrail is a possible place to wait for the teacher to give new guidance on the activity, it serves to assist in lateral locomotion and to place the hands, especially when the edge is high. Drowning in swimming lessons can happen when the student is going to cross from one edge to the other and when he arrives he is unable to hold on. To prevent this from happening, the teacher in this crossing process can use the strategy of crossing one at a time, increasing the distances gradually, creating recovery pauses on the platform, until the student improves his aquacity and has the autonomy to use the four propulsive limbs to move alone to cross the pool. For Peden & Franklin, (2020) reducing any barriers that hinder learning to swim is vital to maximize a child's ability to enjoy water safely throughout their life. Thus, in places where there are handrails there is a tendency to have a greater number of students, when compared to places that do not have handrails. As a suggestion, on edges that have lane fasteners, near the water level, where the distance between them is 2 to 2.5 m, you can, in the absence of the handrail, use a rope of good thickness and resistance, which can sustain student support.

3.3 Lifeguards

The lifeguard professional is on site to protect, guard the students' lives, provide preventive information to avoid accidents and is able to act in a rescue if prevention fails. In the absence of lifeguards, care with prevention should be greater. Even swimming athletes are not exempt from getting sick when swimming and that is why it is important that, regardless of the public that is in the pool, there are always lifeguards on site.
In addition, the lifeguard can help to check if the brightness and acoustics of the pool allow safe classes for students. Having good luminosity helps in the visualization of all the students, conversely the low luminosity makes the class a risk of the student diving in a shallow area, hitting his hands on the edge, drowning and the teacher not seeing when he is submerged. Regarding acoustics, if the place does not have good acoustics, the risk of not hearing an orientation or a request for help/help increases, conversely, the risk of accidents decreases when the place prepares a sound system to give preventive or to quickly call someone to help in an emergency. In the absence of lifeguards in the pool environment, the number of students will be smaller. Specifically, in the State of Rio de Janeiro, it is mandatory to have a pool lifeguard or a professionally qualified physical education teacher for this purpose, in swimming pools located in residential buildings, with dimensions greater than 6 m x 6 m, in hotels, social clubs and sports, and in sports and gymnastics academies Law 3728/2001 revised through Law Nº. 4428/2004 (ALERJ, 2001).

3.4 Depth reducer

Among the teaching materials that can help in the safety of swimming lessons, we can mention: the depth reduction platform. It is used to decrease the depth in a certain part of the pool, mainly for children, so that students can stand inside the pool, pause on the way when crossing from one edge to another and wait for the directions without having to try to float, to listen to the explanations and allow the teacher to have spots in the pool where the student can rest. The platform (depth reducer) is a safe, practical and versatile solution for raising the bottom of the pool. The teacher can create a path with platforms to decrease depth and increase safety. However, it is important for the student to learn about what is shallow/deep and what care should be taken in each of these spaces (VASCONCELLOS & MACEDO, 2021). If the place does not have adequate material to serve the students individually, such as the depth reducer, the number of students tends to be smaller.

DIAGNOSTIC EVALUATION FOR CLASS + SAFE

From these ten factors identified, it was possible to develop a pilot test of the number of students per class so that swimming teachers can identify, within their reality, which items are met (yes). The test result for class + safe that will be presented below, can help to reflect on the decision of how many students per class are most suitable. The
pilot test for class + safe consists of 10 items, which are worth one point for each (yes). To perform the test, the teacher needs to know his own characteristics, those of his students and his pool, in addition, he must analyze each class separately.

Pilot test of number of students per class + safe swimming class

<table>
<thead>
<tr>
<th>Factor</th>
<th>Yes (1)</th>
<th>No (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Factors related to the students' profile. THE STUDENTS HAVE...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. tall enough to stand in the pool?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. excellent aquacity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. medical clearance to do swimming?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Factors related to the teacher's profile. THE TEACHER HAS...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. underwater assistant (intern or other teacher)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. course in the area of water accident prevention?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. experience with swimming lessons?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Factors related to the profile of the environment. THE POOL HAS...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. shallow area that allows the student to stand?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. handrail at the edges for the student to hold?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. lifeguards present during class?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. teaching material (depth reducer) available for each student?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total of points:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFLECTION ON THE CLASS + SAFE TEST

With the test result, the teacher can reflect on the appropriate number of students for a given class. What can be intuited is that the lower the score achieved on the test, the more care the teacher will need to be in the pool with that specific class. The test was not designed to determine whether the pool is safer than another, but whether the class is safer. Each class will have a safety level according to the result presented in the class + safe diagnostic test, which will take into account the sum of the scores obtained by the students, related to each class.

The good news is that of the ten items evaluated for class + safe, all can be modified, except the item (stature) of the student, however, this low stature compensation can be mitigated by using a platform to raise the bottom of the pool.

Thus, the suggestion is that there is reflection in the sense that, for each factor marked as not covered (no answer), the number of students should be evaluated regarding the decrease or on what change can be made regarding the student, teacher or swimming pool for may the answer become a (yes).

Reflecting on the unique reality that each pool has, as well as on the principle of the biological individuality of the student and the teacher, can help to make the class of each class + safe.

To reduce the likelihood of a negative aquatic experience occurring that makes the student less willing to learn to swim (PEDEN & FRANKLIN, 2020). It is up to the
swimming teacher to decide how many students per class he can teach, without putting the student's life at risk and being co-responsible for the decision and consequences.

In fact, there is no number of students per class that applies to all pools with swimming classes. There are factors to be considered regarding 1) students (stature, aquacity and medical clearance), 2) teachers (assistant in the water, prevention course in the aquatic area, experience) and 3) pool environment (depth reducer, handrail on the edge, lifeguards and teaching material) (VASCONCELLOS ET AL., 2018) to decide how many students per class will be adopted in each swimming lesson. For example, a 10 m x 20 m pool can have two classes in sequence, but with different characteristics: the first has 5 students and the second 20 students. The class of 5 students, despite having 4 times fewer students, can be more insecure for customers due to the components that influence decision making. If in the first group the pool is deep, beginners, short stature, no bar, no lifeguards, inexperienced teacher, all with medical restrictions, no individualized teaching material and students have very poor water, the risk is greater for these students. On the other hand, the class that has 20 students, even so, can be safer because the students, even if they are children or adolescents, already know how to swim the four strokes, are tall, have excellent aquacity, have lifeguards present, have an experienced teacher and all are able to do so without medical restrictions.

If another location has a pool with the same size, it does not mean that it will have the same number of students per class as in the previous example, it all depends on the context of the class. What will determine the number of students per class + safe are the number of components (yes answers) of this pilot test of decision-making reflection. The decision on the number of students may, in some cases, face external pressure from the owner (more profit) or the public sector (social projects) to place more students, however, the decision that balances profitability or political interests with quality and class security must be aligned.

CONCLUSIONS

It can be concluded that there are at least ten variables that influence the manager or teacher when deciding the appropriate number of students in each class so that it is considered a safe + class. No class is 100% safe, but it is possible to have components in the class that differ from others and make them safer than others when they don't. The professionals involved in deciding how many students, per class, should put in the pool, at each time, need to combine quality, safety and quantity in each swimming class. In this
sense, student safety needs to be the protagonist in this scenario, so that no incident occurs during swimming lessons.

The balance between the quality of teaching and safety in the classroom must be defended by the teacher who teaches the class and endorsed by parents, students, aquatic managers, CREF and by government public policies. To this end, the result of the class + safe test and common sense will help to make a balanced decision regarding the appropriate amount per class.

It is suggested that the teacher constantly reassess their aquatic environment to verify if these factors, which are not included in the quantitative test of students per class, are preventing their class from having a safe class.

Thanks to Antonio Santos and David Szpilman, from SOBRASA, who read the first version of the text and made suggestions.
REFERENCES

10. Vasconcellos, Marcelo Barros; Santos, RO. Um estudo sobre o auto-salvamento nas aulas de natação, para crianças de 4 a 6 anos, como conteúdo auxiliar na prevenção de afogamentos. Revista Sprint. 2004; Ano XXI, nº134, p.43-47.

ATTACHMENT Water level test for Swimming + Safe - Prof. Dr. Marcelo Barros de Vasconcellos

Name: __________________________ Age: _____ years Date of 1st assessment: __/__/__

Aquacity is related to the degree of adaptation of a person to the liquid environment and their conditions of self-sustainability, mastering aquatic breathing, moving in the aquatic environment, having body awareness and little chance of drowning.

<table>
<thead>
<tr>
<th>Can you perform the activity to be tested?</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perform (static apnea) breathing blocks underwater - 10 seconds - 3 times</td>
<td>() ()</td>
</tr>
<tr>
<td>2. Dive your head into the water without fear, release the air (breath control) - 5 times</td>
<td>() ()</td>
</tr>
<tr>
<td>3. Sink and pick up an object on the bottom without using glasses - 1 object at 1 m</td>
<td>() ()</td>
</tr>
<tr>
<td>4. Change from supine to prone - 2 times</td>
<td>() ()</td>
</tr>
<tr>
<td>5. Change from vertical to horizontal floating position - 2 times</td>
<td>() ()</td>
</tr>
<tr>
<td>6. Float in the supine position without the aid of materials - 30 seconds</td>
<td>() ()</td>
</tr>
<tr>
<td>7. Sustain yourself vertically with the use of clapping - 30 seconds</td>
<td>() ()</td>
</tr>
<tr>
<td>8. Use the 4 limbs as propulsive segments on the surface to the edge - 3 meters</td>
<td>() ()</td>
</tr>
<tr>
<td>9. Perform underwater displacement (dynamic apnea) - 2 meters</td>
<td>() ()</td>
</tr>
<tr>
<td>10. Squat, sink standing and jump with hands out of the water - 2 times - 2 meters</td>
<td>() ()</td>
</tr>
</tbody>
</table>

When the student is able to perform the activity alone, the answer yes will be worth one (1) point.

Total of points: _____

Result of the aquacity level is the sum of each sim (1 point) obtained in the 10 tested activities.

- 0–2 points - Very Weak Aquacity
- 3–4 points - Weak Aquacity
- 5–6 points - Medium Aquacity
- 7–8 points - Good Aquacity
- 9–10 points - Excellent Aquacity

References: