A stochastic model for simulating the FC and ZFC processes of FE and PY particles / Um modelo estocástico para a realização de simulações dos processos de FC e ZFC de partículas de FE e PY


  • Rafael Santos da Costa
  • Thiago Rafael da Silva Moura




Nanoparticles, Magnetism, Catalyst, Liquefaction, Coal.


 We performed computer simulations on the nanoscopic scale to find the energy distribution of the anisotropic barrier of Fe and Py nanoparticles. We investigated the physical properties of these magnetic nanoparticles for potential application in the catalysis of coal liquefaction. We examined the characteristics of the microstructure of these fundamental nanoparticles to optimize the ability to catalyze the breakdown of carbon-carbon bonds. We reported our results for nanoparticles, cubic, Fe and Py. We constructed ZFC and FC curves to determine the distribution of the blocking temperature. The ZFC and FC curves exhibit the same blocking temperature, behavior dependent on the magnitude of the applied magnetic field. Finite-scale scale effects determinant for technological applications are reported.


Keywords: Nanoparticles, Magnetism, Catalyst, Liquefaction, Coal.




Llinas, M.C.; Sánchez, D. Nanopartículas de sílice: Preparación y aplicaciones en biomedicina. Affinidad. 2014, LXXI, 20–31.

Deepak, T., Yashwant, P., Michel, D., Drugs and the pharmaceutical sciences vol. 166, Nanoparticulate Drug-Delivery Systems: An overview. Chapter 1. Nanoparticulate Drug-Delivery Systems: An Overview p.1-32. Edited by Deepak T., Michel D., Yashwant, P. (2007).

Huang, Y. Functionalization of mesoporous silica nanoparticles and their applications in organo-, metallic and organometallic catalysis. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2009.

Popat, A.; Hartono, S.B.; Stahr, F.; Liu, J.; Qiao, S.Z.; Qing Lu, G. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 2011, 3, 2801–2818.

Sun, X. Mesoporous Silica Nanoparticles for Aplications in Drug Delivery and Catalysis. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2012.

Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251.

Slowing, I.I.; Vivero-Escoto, J.L.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem. 2010, 20, 7924–7937.

Mirza-Aghayan, M.; Nazmdeh, S.; Boukherroub, R.; Rahimifard, M.; Tarlani, A.A.; Abolghasemi-Malakshah, M. Convenient and efficient one-pot method for the synthesis of 2-amino-tetrahydro-4H-chromenes and 2-amino-4H-benzo[h]-chromenes using catalytic amount of amino-functionalized MCM-41 in aqueous media. Synth. Commun. 2013, 43, 1499–1507.

Nale, D.B.; Rana, S.; Parida, K.; Bhanage, B.M. Amine functionalized MCM-41: An efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. Catal. Sci. Technol. 2014, 4, 1608–1614.

Nale, D.B.; Rana, S.; Parida, K.; Bhanage, B.M. Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO 2 and aziridines. Appl. Catal. A Gen. 2014, 469, 340–349.

Choudary, B.M.; Kantam, M.L.; Sreekanth, P.; Bandopadhyay, T.; Figueras, F.; Tuel, A. Knoevenagel and aldol condensations catalyzed by a new diamino-functionalized mesoporous material. J. Mol. Catal. A Chem. 1999, 142, 361–365.

Wu, N.; Li, B.; Liu, J.; Zuo, S.; Zhao, Y. Preparation and catalytic performance of a novel highly dispersed bifunctional catalyst [email protected] RSC Adv. 2016, 6, 13461–13468.

Borodina, E.; Karpov, S.I.; Selemenev, V.F.; Schwieger, W.; Maracke, S.; Fröba, M.; Rößner, F. Surface and texture properties of mesoporous silica materials modified by silicon-organic compounds containing quaternary amino groups for their application in base-catalyzed reactions. Microporous Mesoporous Mater. 2015, 203, 224–231.

Trisunaryanti, W.; Dwi Putri, A.; Lutfiana, A.; Dewi, K. Transesterification of Waste Cooking Oil Using NH 2 /MCM-41 Base Catalyst: Effect of Methanol/Oil Mole Ratio And Catalyst/Oil Weight Ratio towards Conversion of Ester. Asian J. Chem. 2018, 30, 953–957.

Vekariya, R.H.; Prajapati, N.P.; Patel, H.D. MCM-41-anchored sulfonic acid (MCM-41-SO 3 H): An efficient heterogeneous catalyst for green organic synthesis. Synth. Commun. 2016, 46, 1713–1734.

Luštická, I.; Vrbková, E.; Vysko?ilová, E.; Paterová, I.; ?ervený, L. Acid functionalized MCM-41 as a catalyst for the synthesis of benzal-1,1-diacetate. React. Kinet. Mech. Catal. 2013, 108, 205–212.

Alinasab Amiri, A.; Javanshir, S.; Dolatkhah, Z.; Dekamin, M.G. SO3H-functionalized mesoporous silica materials as solid acid catalyst for facile and solvent-free synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives. New J. Chem. 2015, 39, 9665–9671.

Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. SO3H-functionalized MCM-41 as an efficient catalyst for the combinatorial synthesis of 1H-pyrazolo-[3,4-b]pyridines and spiro-pyrazolo-[3,4-b]pyridines. J. Iran. Chem. Soc. 2017, 14, 1583–1589.

Kaiprommarat, S.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Samart, C. Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent. Fuel 2016, 174, 189–196.

Karnjanakom, S.; Kongparakul, S.; Chaiya, C.; Reubroycharoen, P.; Guan, G.; Samart, C. Biodiesel production from Hevea brasiliensis oil using SO 3 H-MCM-41 catalyst. J. Environ. Chem. Eng. 2016, 4, 47–55.

Sarrafi, Y.; Mehrasbi, E.; Mashalchi, S.Z. MCM-41-SO 3 H: An efficient, reusable, heterogeneous catalyst for the one-pot, three-component synthesis of pyrano[3,2-b]pyrans. In Research on Chemical Intermediates; Springer:Dordrecht, The Netherlands, 2015; pp. 1–13.

Appaturi, J.N.; Selvaraj, M.; Abdul Hamid, S.B.; Bin Johan, M.R. Synthesis of 3-(2-furylmethylene)-2,4-pentanedione using DL-Alanine functionalized MCM-41 catalyst via Knoevenagel condensation reaction. Microporous Mesoporous Mater. 2018, 260, 260–269.

Vrbková, E.; Vysko?ilová, E.; ?ervený, L. Functionalized MCM-41 as a catalyst for the aldol condensation of 4-isopropylbenzaldehyde and propanal. React. Kinet. Mech. Catal. 2015, 114, 675–684.

Sharma, K.K.; Asefa, T. Efficient bifunctional nanocatalysts by simple postgrafting of spatially isolated catalytic groups on mesoporous materials. Angew. Chem. Int. Ed. 2007, 46, 2879–2882.

AJAYAN, Pulickel Madhavapanicker. Nanotubes from carbon. Chemical reviews, v. 99, n. 7, p. 1787-1800, 1999.

BAIBICH, Mario Norberto et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, v. 61, n. 21, p. 2472, 1988.

BINASCH, Grünberg et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, v. 39, n. 7, p. 4828, 1989.

BINDER, K.; LANDAU, David P. . A Guide to Monte-Carlo Simulations in Statistical Physics. 3rd ed. Cambridge: Cambridge University Press, 2009.

CARBONE, C.; ALVARADO, S. F. Antiparallel coupling between Fe layers separated by a Cr interlayer: Dependence of the magnetization on the film thickness. Physical Review B, v. 36, n. 4, p. 2433, 1987.

CINTRA, Murilo Bicudo et al. Magnetic resonance imaging: dynamic contrast enhancement and diffusion-weighted imaging to identify malignant cervical lymph nodes. Radiologia brasileira, v. 51, n. 2, p. 71-75, 2018.

GRÜNBERG, PETER et al. Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Physical review letters, v. 57, n. 19, p. 2442, 1986.

HAYEK, S. et al. Application of nanomagnetic particles in hyperthermia cancer treatment. Nanotech, v. 2, p. 67-70, 2006.

Santos et al, R.. The relativistic effect of critical temperature reduction in the two dimensional Ising model. Braz. Ap. Sci. Rev, Curitiba, v. 4, n. 3, p. 1535-1543.

HINCHEY, Laura Lee; MILLS, D. L. Magnetic properties of superlattices formed from ferromagnetic and antiferromagnetic materials. Physical Review B, v. 33, n. 5, p. 3329, 1986.

HUBER, Dale L. Synthesis, properties, and applications of iron nanoparticles. Small, v. 1, n. 5, p. 482-501, 2005.

MARTÍNEZ-EDO, Gabriel et al. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts, v. 8, n. 12, p. 617, 2018.

MARTINS JR, S. M. S. B. et al. Excitations of interface pinned domain walls in constrained geometries. AIP Advances, v. 8, n. 5, p. 056004, 2018.

MUELA, Alicia et al. Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. The Journal of Physical Chemistry C, v. 120, n. 42, p. 24437-24448, 2016.

METROPOLIS, Nicholas et al. Equation of state calculations by fast computing machines. The journal of chemical physics, v. 21, n. 6, p. 1087-1092, 1953.

PEDROSA, S. S. et al. Dipolar effects on the magnetic phases of superparamagnetic clusters. Journal of Applied Physics, v. 123, n. 23, p. 233902, 2018.

SHINJO, Teruya (Ed.). Nanomagnetism and spintronics. Elsevier, 2013.

TANENBAUM, L. N.. Contrast enhancement in MR imaging: New options, new techniques, new opportunities. The Journal of Practical Medical Imagin and Management, 2015.

A. S. M. Silva, Ana L. Dantas, G. O. G. Rebouças, and A. S. Carriço. Nucleation of vortex pairs in exchange biased nanoelements. Journal of Applied Physics 109, 07D314, 2011.

Goti?, M.; Jurkin, T.; Musi?, S. Factors that may influence the micro-emulsion synthesis of nanosize magnetite particles. Colloid Polym. Sci. 2007, 285, 793–800.

Zhou, Z.H.; Wang, J.; Liu, X.; Chan, H.S.O. Synthesis of Fe 3 O 4 nanoparticles from emulsions. J. Mater. Chem. 2001, 11, 1704–1709.

Yu, W.W.; Falkner, J.C.; Yavuz, C.T.; Colvin, V.L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 20, 2306–2307.

Nedkov, I.; Merodiiska, T.; Slavov, L.; Vandenberghe, R.E.; Kusano, Y.; Takada, J. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J. Magn. Magn. Mater. 2006, 300, 358–367.

Utkan, G.G.; Sayar, F.; Batat, P.; Ide, S.; Kriechbaum, M.; Pi?kin, E. Synthesis and characterization of nanomagnetite particles and their polymer coated forms. J. Colloid Interface Sci. 2011, 353, 372–379.

Mizutani, N.; Iwasaki, T.; Watano, S.; Yanagida, T.; Tanaka, H.; Kawai, T. Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bull. Mater. Sci. 2008, 31, 713–717.

Daou, T.J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J.M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404.

Zhang, H.; Zhong, X.; Xu, J.-J.; Chen, H.-Y. Fe 3 O 4 /Polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure: Synthesis, Characterization, and Their Electrochemical Properties. Langmuir 2008, 24, 13748–13752.

Bourlinos, A.B.; Simopoulos, A.; Boukos, N.; Petridis, D. Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization. J. Phys. Chem. B 2001, 105, 7432–7437.

Arruebo, M.; Ho, W.Y.; Lam, K.F.; Chen, X.; Arbiol, J.; Santamaría, J.; Yeung, K.L. Preparation of Magnetic Nanoparticles Encapsulated by an Ultrathin Silica Shell via Transformation of Magnetic Fe-MCM-41. Chem. Mater. 2008, 20, 486–493.

Zhang, L.; Papaefthymiou, G.C.; Ying, J.Y. Synthesis and Properties of ?-Fe 2 O 3 Nanoclusters within Mesoporous Aluminosilicate Matrices. J. Phys. Chem. B 2001, 105, 7414–7423.





Artigos originais