Pequeno ensaio sobre as substâncias húmicas na transformação e biodegradação do óleo cru

Short essay on humic substances in the transformation and biodegradation of crude oil

Authors

  • Eduardo Santos da Silva
  • Luiz Gustavo Pragana
  • Carlos Eduardo Tavares Norat
  • Rafael de Almeida Travassos
  • Ulrich Vasconcelos

DOI:

https://doi.org/10.34115/basrv6n5-007

Keywords:

biorremediação, HPA, substâncias húmicas

Abstract

Microrganismos hidrocarbonoclásticos podem utilizar o óleo cru como fonte de carbono, auxiliando a remoção desse composto no ambiente. O óleo é constituído de frações de hidrocarbonetos simples e complexos, com alto potencial de causar danos ambientais. O solo de regiões que extraem ou extraíram petróleo está condicionado à exposição por esses compostos, afetando a cadeia trófica como um todo. Alguns fatores abióticos auxiliam os processos microbianos de remoção do óleo, seja pela redução da concentração de contaminantes, seja por transformar em moléculas mais biodisponíveis. A qualidade e teor da matéria orgânica no solo tem um importante papel nestes processos. Quando a concentração de substâncias húmicas está aumentada, a biodegradação de hidrocarbonetos persistentes como os hidrocarbonetos policíclicos aromáticos (HPA) ocorre mais facilmente. Este trabalho faz uma breve discussão deste evento.

References

ABDEL-SHAFY, H. I.; MANSOUR, M.S.M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. v. 25, n. 1, p. 107-123, 2016.

AMIR, S.; HAFIDI, M.; MERLINA, G.; HAMDI, H.; REVEL, J.C. Fate of polyaromatic hydrocarbons during composting of lagooning sewage sludge. Chemosphere. v. 58, n. 4, p. 449-458, 2005.

BELLO, O.S.; ANOBEME, S.A. The effects of oil spillage on the properties of soil and environment around the marketing outlets of some petroleum marketing companies in calabar, Cross River State, Nigeria. Mayfair J Soil Sci. v. 1, n. 1, p. 1-14, 2015.

BLACK, B.C. Crude reality: petroleum in world history. 2nd ed. Lanhan: Rowman & Littlefield Publishers, 2020, 304p.

BROWN, D.M.; BONTE, M.; GILL, R.; DAWICK, J.; BOOGAARD, P.J. Heavy hydrocarbon fate and transport in the environment. J Eng Geol Hydrogeol. v. 50, n. 3, p. 333-346, 2017.

CAVALCANTI, T.G.; SOUZA, A.F.; FERREIRA, G.F.; DIAS, D.S.B.; SEVERINO, L.S.; MORAIS, J.P.S.; SOUSA, K.A.; VASCONCELOS, U. Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste Biomass Valor. v. 10, n. 1, p. 205-214, 2019. DOI:10.1007/s12649-017-0041-8.

CARON, V. C., GRAÇAS, J. P., CASTRO, P. R. C. Condicionadores do solo: ácidos húmicos e fúlvicos. 58ª ed. Piracicaba: ESALQ – Divisão de Bibioteca, 2015.

CHILVERS, B.L., MORGAN, K.L., WHITE, B.J. Sources and reporting of oil spills and impacts on wildlife 1970–2018. Environ Sci Pollut Res. v. 28, p. 754-762, 2021.

COCÂRŢĂ, D.M.; STOIAN, M.A.; KARADEMIR, A. Crude Oil Contaminated Sites: Evaluation by Using Risk Assessment Approach. Sustainability. v. 9, n. 1365, 2017. doi:10.3390/su9081365.

COTRUFO, M.F.; RANALLI, M.G; HADDIX, M.L.; SIX, J.; LUGATO, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci. v. 12, p. 989-994, 2019. DOI: 10.1038/s41561-019-0484-6.

CURIEL-ALEGRE, S.; VELASCO-ARROYO, B.; RUMBO, C.; KHAN, A.H.A.; RAMOS, J.A.T.; RAD, C.; GALLEGO, J.L.R.; BARROS, R. Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere. v. 307, p. 135638, 2022.

FAN, Z.; LIN, L. Exposure science: Contaminant Mixtures. Encyclopedia of Environmental Health, p. 805–815, 2011. DOI: 10.1016/b978-0-444-63951-6.00122-4.

FOWZIA, A.; FAKHRUDDIN, A.N.M. A Review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Res. v. 11, n. 3, p. 555811, 2018. DOI: 10.19080/IJESNR.2018.11.555811.

DROZDOVA, S.; RITTER, W.; LENDL, B.; ROSENBERG, E. Challenges in determination of petroleum hydrocarbons in water by gas chromatography (hydrocarbon index). Fuel. v. 113, p. 527-536, 2013

GEISSEN, V.; RIVERA, P.G.; LWANGA, E.H.; MENDOZA, R.B.; NARCÍAS, A.T.; MARCÍAS, E.B. Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Ecotoxicol Environ Saf. v. 71, n. 71, p. 638-642, 2008.

GHOSAL, D.; GHOSH, S.; DUTTA, T.K.; AHN, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol. v. 2016, n. 7, p. 1369, 2016. DOI: 10.3389/fmicb.2016.01369.

GRINHUT, T.; HADAR, Y.; CHEN, Y. Degradation and transformation of humic substances by saprotrophic fungi: Processes and mechanisms. Fungal Biol Rev. v. 21, p. 179–189, 2007.

HAMME, J.D.V.; SINGH, A.; WARD, O.P. Recent advances in petroleum microbiology. Microbiol Molec Biol Rev. v. 67, n. 4, p. 503-549, 2003.

HENNER P.; SCHIAVON, M.; MOREL, J.; LICHTFOUSE, E. Polycyclic aromatic hydrcarbons (PAHs) occurrence and remediation methods. Anal Mag. v. 25, p. 9-10, 1997.

JACQUES, R.J.S.; BENTO, F.M.; ANTONIOLLI, Z.I.; CAMARGO, F.A.O. Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos. Cienc Rural. v. 37, p. 1192- 1201, 2007.

JEDNAK, T.; AVDALOVIC, J.; MILETIC, S.; BESKOSKI, L.S.; STANKOVI, D.; MILIC, J.; BESKOSKI, V.; CVIJOVIC, G.G.; VRVIC, M.M. Transformation and synthesis of humic substances during bioremediation of petroleum hydrocarbons. Int Biodeter Biodegrad. v. 122, p. 47-52, 2017.

KE, L.; BAO, W.; CHEN, L.; WONG, Y.S.; TAM, N.F.Y. Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries. Chemosphere. v. 76, n. 8, p. 1102-1108, 2009.

KORFMACHE, W.A.; WEHRY, E.L.; MAMANTOV, G.; NATUSCH, D.F.S. Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environ Sci Technol. v. 14, n. 9, p. 1094-1099, 1980.

KUPPUSAMY, S.; MADDELA, N.R.; MEGHARAJ, M.; VENKATESWARLU, K. Fate of Total Petroleum Hydrocarbons in the environment. In: KUPPUSAMY, S.; MADDELA, N.R.; MEGHARAJ, M.; VENKATESWARLU, K. Total petroleum hydrocarbons. London: Springer, 2019, p. 57-77.

KULIKOVA, N.A.; PERMINOVA, I.V. Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules. v. 26, n. 9, p. 2706. DOI: 10.3390/molecules26092706.

LEE, R.F. Photo-oxidation and photo-toxicity of crude and refined oils. Spill Sci Technol Bull. v. 8, n. 2, p. 157-162, 2003.

LEWIS, K.A.; CHRISTIAN, R.R.; MARTIN, C.W.; ALLEN, K.L.; McDONALD, A.M.; ROBERTS, V.M.; SHAFFER, M.N.; VALENTINE, J.F. Complexities of disturbance response in a marine food web. Limnol Oceanogr. v. 67, n. S1, p. S352-S364, 2022.

LI, Q.; YOU, P.; HU, Q.; LENG, B.; WANG, J.; CHEN, J.; WAN, S.; WANG, B.; YUAN, C.; ZHOU, R.; OUYANG, K. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Ecotoxicol Environ Saf. v. 204, n. 111083, 2020. DOI: 10.1016/j.ecoenv.2020.111083.

LI, R.; HUA, P.; CAI, J.; WANG, X.; ZHU, Y.; HUANG, Z.; LI, P.; WANG, Z.; BAI, Y.; HU, B.X.; ZHANG, J.; KREBS, P. A sixteen-year reduction in the concentrations of aquatic PAHs corresponding to source shifts in the Elbe River, Germany. J Clean Prod. v. 223, p. 631-640, 2019. DOI: 10.1016/j.jclepro.2019.03.159.

LIMONGI, R.; OLIVEIRA, B.T.M.; GERVAZIO, K.Y.; MORAIS, V.C.; BARBOSA, P.S.Z.; CAVALCANTI, T.G.; VASCONCELOS, U.; AMARAL, I.P.G. Biodegradation of pyrene and anthracene by Pseudomonas aeruginosa TGC-02 in submerged culture. Int J Eng Res Appl. v. 10, n. 6, p. 12-20, 2020.

NADARAJAH, N.; VAN HAMME, J.; PANNU, J.; SINGH, A.; WARD, O. Enhanced transformation of polycyclic aromatic hydrocarbons using a combinaed fenton’s reagent, microbial treatment and surfactants. Appl Microbiol Biotechnol. v. 59, n. 4-5, p. 540- 544, 2002.

NIE, M.; HE, M.; LIN, Y.; WANG, L.; JIN, P.; ZHANG, S.Y. Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. J Environ Manage. v. 173, p. 34-40, 2016.

NIYONSABA, E.; MANHEIM, J.M; YERABOLU, R.; KENTTAMAA, H.I.; Recent advances in petroleum analysis by mass spectrometry. Anal Chem. v. 91, n. 1, p. 156-177, 2018.

NORAT, C.E.T.; PRAGANA, L.G.; JARAMILLO, L.Y.A.; TRAVASSOS, R.A.; VASCONCELOS, U. Hydrocarbonoclastic activity in bacterial biofilms: A systematic study emphasizing pseudomonads. Conjecturas. v. 22, n. 12, p. 548-562, 2022. DOI: 10.53660/CONJ-1568-2D01.

OLIVEIRA, B.T.M.; BARBOSA, P.S.Z.; LIMONGI, R.; VASCONCELOS, U. Fast, simple and reliable assay to detect the degrading potential of triazines by hydrocarbonoclastic Pseudomonas aeruginosa. Braz Appl Sci Rev. v. 6, n. 1, p. 281-287, 2022.

OSSAI, I.C.; AHMED, A.; HASSAN, A.; HAMID, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov. v. 17, p. 100526, 2020. DOI: 10.1016/j.eti.2019.100526.

PLAZA, C.; BRUNETTI, G.; SENESI, N.; POLO, A. Proton binding to humic acids from organic amended soils by the NICA-Donnan model. Environ Sci Technol. v. 39, n. 17, p. 6692-6697, 2005.

SCOTT-THOMAS, A.; SYHRE, M.; PATTEMOREL, P. K.; EPTON, M.; LAING, R.; PEARSON, J.; CHAMBERS, S. T. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. v. 10, p. 1-10, 2010.

SILVA, E.S.; PRAGANA, L.G.; VASCONCELOS, U. Photooxidation vs Biodegradation: A short review on fate of heavy hydrocarbons after oil spill in sea water. Int J Eng Res Appl. v. 11, n. 5, p. 8-17, 2021.

SISTEMA FIEMS. Governo faz nesta quarta megaleilão do pré-sal com potencial de arrecadação de até R$ 106,5 bilhões. Disponível em: <https://www.fiems.com.br/noticias/governo-faz-nesta-quarta-megaleilao-do-pre-sal-com-potencial-de-arrecadacao-de-ate-r-106-5-bilhoes/30281>. Acesso 05 set 2022.

SOLÉ, J.; GARCÍA-OLIVARES, A.; TURIEL, A.; BALLABRERA-POY, J. Renewable transitions and the net energy from oil liquids: a scenarios study. Renew Energ. v. 116, p. 258-271, 2018.

SOKOL, N.W.; SLESSAREV, E.; MARSCHMANN, G.L.; NICOLAS, A.; BLAZEWICZ, S.J.; BRODIE, E.L.; FIRESTONE, M.K.; FOLEY, M.M.; HESTRIN, R.; HUNGATE, B.A.; KOCH, B.J.; STONE, B.W.; SULLIVAN, M.B.; ZABLOCKI, O.; LLNL SOIL MICROBIOME CONSORTIUM; PETT-RIDGE, J. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol. v. 20, p. 415-430, 2022. DOI: 10.1038/s41579-022-00695-z.

TERAMOTO, M.; QUECK, S.Y.; OHNISHI, K. Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the Strait of Malacca. Plos One. v. 8, n. 6, p. e66594, 2013. DOI: 10.1371/journal.pone.0066594.

WILLIAMS, S.; SHIRLEY, H. How moisture content levels and packing density in soil affect crude oil spreads. UMS Undergrad Res J. v. 3, n. 1, p. 74-83, 2019.

WU, L.; MOSES, S.; LIU, Y.; RENPENNING, J.; RICHNOW, H. H. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis. Anal Chimica Acta. v. 1064, n. 8, p. 56-64, 2019.

WU, W.; HUANG, C.; TANG, Z.; XIA, X.; LI, W.; LI, Y. Response of electron transfer capacity of humic substances to oil microenvironment. Environ Res. v. 213, p. 113504, 2022.

YU, L.; DUAN, L.; NAIDU, R.; SEMPLE, K. T. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci Total Environ. v. 613-614, p. 1140-1153, 2018.

ZHANG, X-X.; CHENG, S-P.; ZHU, C-J.; SUN, S-L. Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere. v. 16, n. 5, p. 555-565, 2006.

Published

2022-09-26

How to Cite

Silva, E. S. da, Pragana, L. G., Norat, C. E. T., Travassos, R. de A., & Vasconcelos, U. (2022). Pequeno ensaio sobre as substâncias húmicas na transformação e biodegradação do óleo cru : Short essay on humic substances in the transformation and biodegradation of crude oil . Brazilian Applied Science Review, 6(5), 14101–14111. https://doi.org/10.34115/basrv6n5-007

Issue

Section

Original articles