The effect of electrolyzed water on phytopathogenic fungi that infect Prunus persica var. nectarine at post-harvest / Efecto del agua electrolizada en fitopatógenos fungosos que afectan Prunus persica var. nectarine en postcosecha

Autores

  • Javiera Molina B.
  • Luz María Pérez R.
  • Jaime R. Montealegre A.

DOI:

https://doi.org/10.34188/bjaerv5n3-002

Palavras-chave:

Electrolyzed water (EW), Botrytis cinerea, Geotrichum candidum, Monilinia laxa, Penicillium expansum, Rhizopus stolonifer

Resumo

Postharvest immersion of Prunus persica var. nectarine into electrolyzed water, EW (25.2 ppm of active ingredient), at different time periods of inoculation with pathogens previously isolated from rotted fruits (A, immediately before fruit immersion; B, three hours after fruit immersion and C, three hours before fruit immersion), significantly reduced fruit rotting caused by Botrytis cinerea (A: 40.2%, B: 43.1% and C: 39.1%), or by Monilinia laxa (A: 80.9%, B: 49.8% and C: 46.2%), or by Penicillium. expansum (A: 60.3%, B: 31.9% and C: 49.7%) or by Rhizopus stolonifer (A: 74.4%, B: 60.8% and C: 72.6%). Immersion of fruits into NaClO (100 ppm of active ingredient), showed significant differences with EW treatment: B. cinerea (B/NaClO: 34.5%), M. laxa (A/NaClO: 62.2%; B/NaClO: 36.2% and C/NaClO: 36.2%); P. expansum (C/NaClO: 60.9%) and R. stolonifer (A/NaClO: 81.3%; B/NaClO: 71,2% and C/NaClO: 83.9%) being in most cases, EW better than NaClO. Non inoculated fruits did not show any negative effect after treatment with EW or with NaClO. Also, IC50 values for EW and for NaClO obtained in in vitro tests for mycelia development and spore germination of the different pathogens, correlate well with the in vivo tests. All results suggest that EW can be used as an alternative method to NaClO to control postharvest fungi of Prunus persica var. nectarine fruits , considering that the exposure times and the concentration of EW may be different, depending on the pathogen to be controlled.

Referências

Aday, M. S. 2016. Application of electrolyzed water for improving postharvest quality of mushroom. LWT Food Science and Technology. 68: 44–51.

Agrios, G. N. 2001. Plant Pathology (4ª Ed) Academic Press, New York, USA. 635 pp.

Al-Haq MI, Seo Y, Oshita S and Kawagoe. 2002. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear by Botryosphaeria berengeriana. Food Research International 35: 657-664.

Al-Haq, M. I., Sugiyama, J. and Isobe, S. 2005. Applications of electrolyzed water in agriculture and food industries. Food Science Technology Research 11: 135-150.

ASOEX A.G. 2022. 2020-2021 season: Chilean fruit exports end with a slight increase of 1.2%. https://www.asoex.cl/component/content/article/25-noticias/1029-temporada-2020-2021-exportaciones-de-frutas-chilenas-terminan-con-leve-alza-de-1-2-mientras-china-se-consolida-como-segundo-pais-de-destino.html. Reviewed April 27, 2022.

Barnett HL and Hunter BB. 1998. Illustrated genera of imperfect fungi (4th Ed.) St. Paul, Minnesota: The American Phytopathological Society, 218 pp.

Chen Y, Hung Y-C, Chen M, and Lin H. 2017. Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. LWT - Food Science and Technology 84: 650-657.

Di Francesco A, CAMELDI I, and MARI M. 2016. New Strategies to Control Brown Rot Caused by Monilinia spp. of Stone Fruit. Agriculturae Conspectus Scientificus 81: 131-135.

Feliziania E, Lichterb A, JL Smilanickc JL, Ippolitod A. 2016. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology 122: 53–69.

Gómez R. , Villarreal Barajas, T, , Vázquez López, A.,Arteaga Garibay, R. I. and Osuna García, J. A. 2017. Sporicidal activity of the electrolyzed solution with neutral pH in fungi of postharvest importance. Revista Mexicana de Ciencias Agrícolas Pub. Esp. 19; 12 de noviembre - 31 de diciembre p. 3993-4007.

Goodburn C, Wallace C. 2013. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control, 32: 418 – 427.

Guentzel JL, Liang Lam K, Callan MA, Emmons SA and Dunham VL. 2010. Postharvest management of gray mold and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water. International Journal of Food Microbiology 143: 54-60.

Karabulut O. A. and Baykal N. 2003. Biological Control of Postharvest Diseases of Peaches and Nectarines by Yeasts. J. Phytopathology 151: 130–134.

Kim, C., Hung, Y. and Brackett, R. E. 2000. Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection 63: 19-24.

Latorre B. y M. Rioja. 2002. Efecto de la temperatura y de la humedad relativa sobre la germinación de conidias de Botrytis cinerea. Ciencia e Investigación Agraria 29(2): 66-72.

Lurie, S., S. Droby, L. Chalupowicz, E. Chalutz (1995): Efficacy of Candida oleophila strain 182 in preventing Penicillium expansum infection of nectarine fruits. Phytoparasitica 23, 231–234.

Margosan, D. A., J. L. Smilanick, D. J. Henson (1997): Combination of hot water and ethanol to control postharvest decay of peach and nectarines. Plant Disease 81, 1405–1409.

Morales, A. 1987. Management and control of post-harvest fungal diseases of stone, pome and kiwi. Miscellaneous publications X. Department of Plant Health, Faculty of Agronomic Sciences, University of Chile. Available at http://mazinger.sisib.uchile.cl/repositorio/lb/ciencias_agronomicas/miscelaneasagronomicas29/c10.html

Okull DO, Demirci A, Rosenberger D and Laborde LF. 2006. Susceptibility of Penicillium expansum Spores to Sodium Hypochlorite, Electrolyzed Oxidizing Water, and Chlorine Dioxide Solutions Modified with Nonionic Surfactants. Journal of Food Protection 69: 1944–1948.

Pinilla, B. 2007. Avances en la detección, prevención y control de Geotrichum en duraznos. II Ciclo de Seminarios de actualización técnico comercial para las principales especies frutícolas de exportación. Available at http://www.asoex.cl/AsoexWeb/Biblioteca.asp??Id Carpeta=111&portada=1&Camino=91|SEMINARIOS/105|2007/111|SEMINARIO CAROZOS – II CICLO – AGOSTO 2007.

Radical Waters. 2010. Technical specifications EW. 5 pp.

Sripong, K., Uthairatanakij, A. and Jitareerat, P. 2021. Effect of hydrocooling in electrolyzed water on reducing fruit rot diseases and maintaining postharvest quality of rambutan. Acta Hortic.1325:27-34.

Strano MC, Altieri G, Admane N, Genovese F, and Di Renzo GC. 2017. Advance in Citrus Postharvest Management: Diseases, Cold Storage and Quality Evaluation. INTECH Chapter 7, pp 139-158. oy a escribir cual quier cosa

Tango CN, Khan I, Kounkeu P-FN, Momna R, Hussain MS, Oh D-H. 2017. Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiology 67: 97-105.

Thorn RM, Lee SW, Robinson GM, Greenman J, Reynolds DM. 2012. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur J Clin Microbiol Infect Dis. 31:641–653.

Yan, P.; Daliri, E.B.; Oh, D.-H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136. https://doi.org/10.3390/ microorganisms9010136

Zoffoli, J. P., Latorre, B. A. and Bariggi, S. 1996. Water sanitization system in fruit center. ACONEX 51: 10-15.

Downloads

Publicado

2022-07-05

Edição

Seção

Artigos originais