Resposta produtiva do cabelo ovinos com a adição alimentar de fenetanolamina / Respuesta productiva del ovino de pelo con la adición alimentaria de la fenetanolamina

Autores

  • Idalia de Jesús Ruíz-García
  • José Rogelio Orozco-Hernández
  • Jesús Natividad Hernández Ibarra
  • Edgardo Patricio Ortiz-Muñoz
  • Víctor Octavio Fuentes Hernández

DOI:

https://doi.org/10.34188/bjaerv5n3-005

Palavras-chave:

Productividad del Pelibuey, nivel de fenetanolamina.

Resumo

Los promotores de crecimiento mejoran el peso animal al incrementar la masa muscular y reducir la adipogénesis.  Los agonistas adrenérgicos como la fenetanolamina al ser adicionado al alimento reducen la grasa corporal tanto en bovinos como en cerdos.  Sin embargo, poca investigación se ha hecho en ovino cruza de Pelibuey en engorda.  Veinticuatro borregos machos de la cruza Pelibuey x Hampshire (peso inicial promedio 23 kg) fueron empleados para evaluar tres niveles de fenetanolamina (Testigo, 0.4, y 0.8 miligramos/kg peso / día) en el alimento a base de sorgo (80%).  El consumo de alimento se alteró ligeramente con el agonista (p < 0.05), pero mejoró la ganancia de peso (g/día; p < 0.05).  La conversión alimenticia disminuyó con la fenetanolamina.  Pero no afecto la cantidad de grasa dorsal (p > 0.05).  En conclusión, se puede decir que el empleo del agonista en cruza de Pelibuey mejora la productividad del animal.

Referências

Barnes TL, Cadaret CN, Beede KA, Schmidt TB, Petersen JL, y Yates DT. 2019. Hypertrophic muscle growth and metabolic efficiency were impaired by chronic heat stress, improved by zilpaterol supplementation, and not affected by ractopamine supplementation in feedlot lambs. Journal of Animal Science. 97(10): 4101-4113. https://doi.org/10.1093/jas/skz271.

Beermann DH. 2002. Beta-Adrenergic receptor agonist modulation of skeletal muscle growth. Journal of Animal Science. 80 (E. Supplement 1): E18-23. https://doi.org/10.2527/animalsci2002.0021881200800ES10004x.

Johnson BJ, Smith SB, y Yong-Chung K. 2014. Historical overview of the effect of β-adrenergic agonists on beef cattle production. Asian-Australasian Journal of Animal Science. 27(5): 757-766. https://doi.org/10.5713/ajas.2012.12524.

Domínguez-Vara IA, Mondragón-Ancelmo J, González Ronquillo M, Salazar-García F, Bórquez-Gastelum JL, y Aragón-Martínez A. 2009. Los B-agonistas adrenérgicos como modificadores metabólicos y su efecto en la producción, calidad e inocuidad de la carne de bovinos y ovinos: una revisión Ciencia Ergo Sum. 16(3): 278-284. https://www.redalyc.org/pdf/104/10412057008.pdf.

Estrada-Angulo A, Barreras-Serrano A, Contreras G, Obregón JF, Robles-Estrada JC, Plascencia A, y Zinn RA. 2008. Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Ruminant Research. 80: 107-110. https://doi.org/10.1016/j.smallrumres.2008.09.006.

Hinson RB, Wiegand BR, Ritter MJ, Allee GL, y Carr SN. 2011. Impact of dietary energy level and ractopamine (Paylean) on growth performance, carcass characteristics, and meat quality of finishing pigs. Journal of Animal Science. 89(11): 3572-3579. doi: 10.2527/jas.2010-3302.

Johnson BJ. 2015. Mechanism of action of beta adrenergic agonists and potential residue issues. https://meatscience.org/docs/default-source/publications-resources/white-papers/mechanism-of-action-of-beta-adrenergic-agonists-and-potential-residue-issues-2015.pdf?sfvrsn=22cb80b3_2.

Lauardi M, Hermanto B, y Restiadi TI. 2020. Assessment of the withdrawal period for ractopamine hydrochloride in the goat and sheep. Iraqi Journal of Veterinary Sciences. 34(2): 405-410. doi 10.33899/ijvs.2019.126114.1237.

Loneragan GH, Thomson DU, y Scott HM. 2014. Increased mortality in groups of cattle administered the beta-adrenergic agonists ractopamine hydrochloride and zilpaterol hydrochloride. PLoS One 2014, 9, e91177. https://doi.org/10.1371/journal.pone.0091177.

López-Carlos MA, Ramírez RG, Aguilera-Soto JI, Aréchiga CF, Méndez-Llorente F, Rodríguez H, y Silva JM. 2010. Effect of ractopamine hydrochloride and zilpaterol hydrochloride on growth, diet digestibility, intake and carcass characteristics of feedlot lambs. Livestock Science. 131: 23-30. doi: 10.1016/j.livsci.2010.02.018.

López-Carlos MA, Ramírez RG, Aguilera-Soto JI, Rodríguez H, Aréchiga CF, Méndez-Llorente F, Chavez JJ, Medina CA, y Silva JM. 2012. Effect of the administration program of 2 β-adrenergic agonists on growth performance and carcass and meat characteristics of feedlot ram lambs. Journal of Animal Science. 90(5): 1521-1531. https://doi.org/10.2527/jas.2010-3513.

Mills SE, Spurlock ME, y Smith DJ. 2003.  -Adrenergic receptor subtypes that mediate ractopamina stimulation of lipolysis. Journal of Animal Science. 81:662-668. doi: 10.2527/2003.813662x.

Mondragón AJ, Domínguez VI, Pinos JM, González M, Bosques JL, Domínguez A, y Mejía ML. 2010. Effect of feed supplementation of zilpaterol hydrochloride on growth performance and carcass traits of finishing lambs. Acta Agriculturae Scandinavica, Section A. 60: 47-52. https://doi.org/10.1080/09064701003605158.

Ríos Rincón FG, Barreras-Serrano A, Estrada-Angulo A, Obregón JF, Plascencia-Jorquera A, Portillo-Loera JJ, y Zinn RA. 2010. Effect of level of dietary zilpaterol hydrochloride (β2-agonist) on performance, carcass characteristics and visceral organ mass in hairy lambs fed all-concentrate diets. Journal of Applied Animal Research, 38: 33-38. https://doi.org/10.1080/09712119.2010.9707150.

Rivera-Alegría FM, Téllez-Medina DI, Cardador-Martínez A, Cruz-Hernández A, Álvarez-González CA, Piña-Gutiérrez JM, y Jiménez-Martínez C. 2022. Effect of zilpaterol and ractopamine on biometric parameters and muscle fiber thickness in Pelibuey lambs. Ecosistemas y Recursos Agropecuarios. 9(1): e3018, 2022. https://doi.org/10.19136/era.a9n1.3018.

Rivera-Villegas A, Estrada-Angulo A, Castro-Pérez BI, Urías-Estrada JD, Ríos-Rincón FG, Rodríguez-Cordero D, Barreras A, Plascencia A, González-Vizcarra VM, Sosa-Gordillo JF, y Zinn RA. 2019. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australasian Journal of Animal Science. 32(2): 209-216. doi: 10.5713/ajas.18.0152.

Romero-Maya ÁM, Herrera-Haro JG, Pinos-Rodríguez JM, García-López JC, Bárcena-Gama R, y González-Muñoz SS. 2013. Effects of ractopamine hydrochloride on growth performance and carcass characteristics in wool and hair lambs. Italian Journal of Animal Science. 12(e32): 200-203. https://doi.org/10.4081/ijas.2013.e32.

Smith DJ, y Shelver WL. 2002. Tissue residues of ractopamine and urinary excretion of ractopamine and metabolites in animals treated for 7 days with dietary ractopamine. Journal of Animal Science. 80(5): 1240-1249. doi: 10.2527/2002.8051240x.

Vezzoni de Almeida V, Costa Nuñez AJ, y Shigueru Miyada V. 2012. Ractopamine as a metabolic modifier feed additive for finishing pigs: a review. Brazilian Archives Biological Technology. 55 (3): 445-456. https://doi.org/10.1590/S1516-89132012000300016.

Vicente-Pérez R, Macías-Cruz U, Andrade Mancilla R, Vicente R, García EO, Martinez R, Avendaño-Reyes L, y Montañez OD. 2020. Suplementación de clorhidrato de zilpaterol en corderos finalizados con dieta sin fibra de forraje. Revista Mexicana de Ciencias Pecuarias. 11(3): 638-650. https://doi.org/10.22319/rmcp.v11i3.5149.

Downloads

Publicado

2022-07-07

Edição

Seção

Artigos originais