Mecanismos antitumorais de moléculas secretadas pelo Trypanosoma cruzi / Antitumor mechanisms of molecules secreted by Trypanosoma cruzi

Authors

  • Priscila Magna do Nascimento Silva
  • Barbara Virginia Mendonca da Silva Correia
  • Auvani Antunes da Silva Júnior
  • Lucas Gabriel Sousa Santos

DOI:

https://doi.org/10.34119/bjhrv5n1-144

Keywords:

Câncer, imunomodulação, antineoplásicos, calreticulina.

Abstract

Moléculas secretadas pelo Trypanosoma cruzi têm se destacado pelos seus papéis imunomoduladores e antitumorais, atuando contra a carcinogênese através da ativação do sistema imunológico, inibição da angiogênese e interferência na proliferação das células tumorais. Esse trabalho buscou analisar os mecanismos de ação e os papéis na inibição da carcinogênese das moléculas secretadas pelo T. cruzi. Foi realizada uma revisão integrativa da literatura, utilizando trabalhos encontrados nas bases de dados PubMed, SciELO, Lilacs e ScienceDirect, selecionando trabalhos publicados entre 2007 e 2021, nas línguas portuguesa e inglesa, considerando-se os seguintes descritores: “Trypanosoma cruzi”, “neoplasias”, “carcinogênese” e “antineoplásicos”. Após a aplicação dos critérios de inclusão e exclusão, foram analisados 73 artigos. A calreticulina do T. cruzi, proteína de 45 kDa, participa de importantes alterações no microambiente tumoral ao desencadear uma resposta imune adaptativa, exercendo um efeito antiangiogênico e inibindo o crescimento celular. Já uma proteína de 21 kDa (P21), secretada em todos os estágios do ciclo de vida do parasita, consegue inibir a invasão e migração celular. Ademais, a sua forma recombinante foi capaz de bloquear a progressão do ciclo celular em células cancerígenas e afetar a angiogênese. Mucinas, como Tn, sialyl-Tn e TF, estão presentes tanto em células tumorais quanto na superfície do T. cruzi e se caracterizam como determinantes antigênicos em comum, induzindo uma resposta imune cruzada. Além disso, tem-se o uso de moléculas secretadas pelo parasita e usadas de forma recombinante na imunoterapia contra o câncer, por suas capacidades de induzirem uma resposta imune forte e duradoura. Dessa forma, os mecanismos antitumorais das moléculas secretadas pelo T. cruzi, advém como fonte norteadora para o desenvolvimento de alternativas terapêuticas contra o câncer.

References

ABELLO-CÁCERES, Paula et al. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?. BMC cancer, v. 16, n. 1, p. 1-12, 2016.

AGUILAR-GUZMAN, Lorena et al. Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo. PLoS One, v. 9, n. 4, p. e95457, 2014.

ÁLVAREZ, Jaime Peña et al. Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties. Immunobiology, v. 225, n. 1, p. 151863, 2020.

ASHMUS, Roger A. et al. Potential use of synthetic α-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Organic & biomolecular chemistry, v. 11, n. 34, p. 5579-5583, 2013.

BERRIEL, Edgardo et al. Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. The Scientific World Journal, v. 2013, 2013.

BOLHASSANI, Azam; ZAHEDIFARD, Farnaz. Therapeutic live vaccines as a potential anticancer strategy. International journal of cancer, v. 131, n. 8, p. 1733-1743, 2012.

BONNEY, Kevin M. et al. Pathology and pathogenesis of Chagas heart disease. Annual Review of Pathology: Mechanisms of Disease, v. 14, p. 421-447, 2019.

BORGES, Bruna Cristina et al. The Recombinant Protein Based on Trypanosoma cruzi P21 Interacts With CXCR4 Receptor and Abrogates the Invasive Phenotype of Human Breast Cancer Cells. Frontiers in Cell and Developmental Biology, v. 8, p. 1111, 2020.

BUSCAGLIA, Carlos A. et al. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nature Reviews Microbiology, v. 4, n. 3, p. 229-236, 2006.

CALLEJAS, Blanca E.; MARTINEZ-SAUCEDO, Diana; TERRAZAS, Luis I. Parasites as negative regulators of cancer. Bioscience reports, v. 38, n. 5, 2018.

CAMPO, Vanessa L. et al. Antibodies against mucin‐based glycopeptides affect Trypanosoma cruzi cell invasion and tumor cell viability. Chembiochem, v. 15, n. 10, p. 1495-1507, 2014.

CONLON, Kevin C.; MILJKOVIC, Milos D.; WALDMANN, Thomas A. Cytokines in the treatment of cancer. Journal of Interferon & Cytokine Research, v. 39, n. 1, p. 6-21, 2019.

CRUZ, P. et al. Trypanosoma cruzi calreticulin: In vitro modulation of key immunogenic markers of both canine tumors and relevant immune competent cells. Immunobiology, v. 225, n. 2, p. 151892, 2020.

DA SILVA, Claudio V. et al. Characterization of a 21 kDa protein from Trypanosoma cruzi associated with mammalian cell invasion. Microbes and infection, v. 11, n. 5, p. 563-570, 2009.

DARANI, Hossein Yousofi; YOUSEFI, Morteza. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncology, v. 8, n. 12, p. 1529-1535, 2012.

DE LEDERKREMER, Rosa M.; AGUSTI, Rosalía. Glycobiology of Trypanosoma cruzi. Advances in carbohydrate chemistry and biochemistry, v. 62, p. 311-366, 2009.

EYERICH, Kilian; DIMARTINO, Valentina; CAVANI, Andrea. IL‐17 and IL‐22 in immunity: Driving protection and pathology. European journal of immunology, v. 47, n. 4, p. 607-614, 2017.

GONSALVES, Elisa Pereira. Conversas sobre iniciação científica. 2011.

HERREROS-CABELLO, Alfonso et al. Comparative proteomic analysis of trypomastigotes from Trypanosoma cruzi strains with different pathogenicity. Infection, Genetics and Evolution, v. 76, p. 104041, 2019.

HOTEIT, Mira et al. Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncology Letters, v. 22, n. 3, p. 1-18, 2021.

INCA (Instituto Nacional de Câncer). Estatísticas de câncer, 2021. Disponível em: <https://www.inca.gov.br/numeros-de-cancer>. Acesso em: 03 de abr. de 2020.

JANSEN, Ana Maria; DAS CHAGAS XAVIER, Samanta Cristina; ROQUE, André Luiz Rodrigues. Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasites & vectors, v. 11, n. 1, p. 1-25, 2018.

JUNQUEIRA, Caroline et al. The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert reviews in molecular medicine, v. 12, 2010.

JUNQUEIRA, Caroline et al. Trypanosoma cruzi as an effective cancer antigen delivery vector. Proceedings of the National Academy of Sciences, v. 108, n. 49, p. 19695-19700, 2011.

KAYAMA, Hisako; TAKEDA, Kiyoshi. The innate immune response to Trypanosoma cruzi infection. Microbes and infection, v. 12, n. 7, p. 511-517, 2010.

KREMENTSOV, Nikolai. Trypanosoma cruzi, cancer and the Cold War. História, Ciências, Saúde-Manguinhos, v. 16, p. 75-94, 2009.

KRYSKO, Dmitri V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, v. 12, n. 12, p. 860-875, 2012.

LEE, Sylvia; MARGOLIN, Kim. Cytokines in cancer immunotherapy. Cancers, v. 3, n. 4, p. 3856-3893, 2011.

LIEKENS, Sandra; SCHOLS, Dominique; HATSE, Sigrid. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Current pharmaceutical design, v. 16, n. 35, p. 3903-3920, 2010.

LÓPEZ, Nandy C. et al. Antiangiogenic and antitumor effects of Trypanosoma cruzi Calreticulin. PLoS Negl Trop Dis, v. 4, n. 7, p. e730, 2010.

LU, Yi-Chien; WENG, Wen-Chin; LEE, Hsinyu. Functional roles of calreticulin in cancer biology. BioMed research international, v. 2015, 2015.

MACHADO, Fabiana S. et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. In: Seminars in immunopathology. Springer-Verlag, 2012. p. 753-770.

NGUYEN, Khue G. et al. Localized interleukin-12 for cancer immunotherapy. Frontiers in Immunology, v. 11, 2020.

OSINAGA, Eduardo. Expression of cancer‐associated simple mucin‐type O‐glycosylated antigens in parasites. IUBMB life, v. 59, n. 4‐5, p. 269-273, 2007.

RAMÍREZ, Galia et al. Trypanosoma cruzi calreticulin: a novel virulence factor that binds complement C1 on the parasite surface and promotes infectivity. Immunobiology, v. 216, n. 1-2, p. 265-273, 2011.

RAMÍREZ-TOLOZA, Galia; ABELLO, Paula; FERREIRA, Arturo. Is the antitumor property of trypanosoma cruzi infection mediated by its calreticulin?. Frontiers in immunology, v. 7, p. 268, 2016.

RAMÍREZ-TOLOZA, Galia et al. The interactions of parasite calreticulin with initial complement components: Consequences in immunity and virulence. Frontiers in Immunology, v. 11, 2020.

RODRIGUES, Adele A. et al. A recombinant protein based on Trypanosoma cruzi P21 enhances phagocytosis. Plos one, v. 7, n. 12, p. e51384, 2012.

RODRIGUES, André Fellipe Freitas. Sistema Imunológico no combate ao câncer: Evasão da Vigilância Imunológica. FACIDER-Revista Científica, v. 3, n. 3, 2013.

ROSKIN, Gr; EXEMPLIARSKAIA, E. Protozoeninfektion und experimenteller Krebs. Zeitschrift für Krebsforschung, v. 34, n. 1, p. 628-645, 1931.

SHARMA, Bhupender; KANWAR, Shamsher S. Phosphatidylserine: A cancer cell targeting biomarker. In: Seminars in cancer biology. Academic Press, 2018. p. 17-25.

SHU, Qun et al. Vasostatin inhibits VEGF-induced endothelial cell proliferation, tube formation and induces cell apoptosis under oxygen deprivation. International journal of molecular sciences, v. 15, n. 4, p. 6019-6030, 2014.

SOSONIUK-ROCHE, Eduardo et al. In vitro Treatment of a Murine Mammary Adenocarcinoma Cell Line with Recombinant Trypanosoma cruzi Calreticulin Promotes Immunogenicity and Phagocytosis. Molecular Immunology, v. 124, p. 51-60, 2020.

SU, Hua et al. Chemokine receptor CXCR4-mediated transformation of mammary epithelial cells by enhancing multiple RTKs expression and deregulation of the p53/MDM2 axis. Cancer letters, v. 307, n. 2, p. 132-140, 2011.

SULLIVAN, Nicole L. et al. Deficiency of antigen-specific B cells results in decreased Trypanosoma cruzi systemic but not mucosal immunity due to CD8 T cell exhaustion. The Journal of Immunology, v. 194, n. 4, p. 1806-1818, 2015.

SUNG, Hyuna et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, v. 71, n. 3, p. 209-249, 2021.

STANTON, Sasha E.; DISIS, Mary L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. Journal for immunotherapy of cancer, v. 4, n. 1, p. 1-7, 2016.

TEIXEIRA, Samuel Cota et al. Mechanistic Insights into the anti-angiogenic activity of Trypanosoma cruzi protein 21 and its potential impact on the onset of chagasic cardiomyopathy. Scientific reports, v. 7, n. 1, p. 1-14, 2017.

TEIXEIRA, Thaise Lara et al. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy. Scientific reports, v. 5, n. 1, p. 1-10, 2015.

TEIXEIRA, Thaise L. et al. Experimental evidences that P21 protein controls Trypanosoma cruzi replication and modulates the pathogenesis of infection. Microbial pathogenesis, v. 135, p. 103618, 2019.

UBILLOS, Luis et al. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. International journal of cancer, v. 138, n. 7, p. 1719-1731, 2016.

VAN TONG, Hoang et al. Parasite infection, carcinogenesis and human malignancy. EBioMedicine, v. 15, p. 12-23, 2017.

WEINBERGER, Katherine et al. Triatoma infestans calreticulin: gene cloning and expression of a main domain that interacts with the host complement system. The American journal of tropical medicine and hygiene, v. 96, n. 2, p. 295, 2017.

WU, Wei-Kang et al. IL-4 regulates specific Arg-1+ macrophage sflt-1–mediated inhibition of angiogenesis. The American journal of pathology, v. 185, n. 8, p. 2324-2335, 2015.

Published

2022-01-24

How to Cite

SILVA, P. M. do N.; CORREIA, B. V. M. da S.; JÚNIOR, A. A. da S.; SANTOS, L. G. S. Mecanismos antitumorais de moléculas secretadas pelo Trypanosoma cruzi / Antitumor mechanisms of molecules secreted by Trypanosoma cruzi. Brazilian Journal of Health Review, [S. l.], v. 5, n. 1, p. 1694–1712, 2022. DOI: 10.34119/bjhrv5n1-144. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/43189. Acesso em: 29 mar. 2024.

Issue

Section

Original Papers