Estimulação cerebral profunda como tratamento na doença de Parkinson

Deep brain stimulation as a treatment in Parkinson's disease

Authors

  • Iasmin Ilce de Marselha Rodrigues
  • Daniel Rodrigues Lemos Neto
  • Felipe de Oliveira Souza
  • Jonathan Moreira Silva de Matos
  • Joyce Milena Arrais de Melo
  • Kamila Magalhães Souza
  • Natacha da Silva Estevão Cáceres Marques
  • Mônica Isaura Corrêa

DOI:

https://doi.org/10.34119/bjhrv5n5-118

Keywords:

doença de Parkinson, estimulação encefálica profunda, antiparkinsonianos

Abstract

O presente trabalho teve como objetivo detalhar a utilização da estimulação cerebral profunda (ECP) como estratégia terapêutica no tratamento da doença de Parkinson (DP) avançada. O diagnóstico da DP tem crescido de forma alarmante nas últimas décadas, sendo, atualmente, a principal desordem do movimento e segunda doença neurodegenerativa mais comum no mundo. O tratamento farmacológico para essa doença é bem estabelecido, porém ineficaz ou insuficiente em algumas situações. Nessas condições, outros métodos terapêuticos para tratar as complicações motoras são indicados, entre eles a ECP, que é uma forma de neuromodulação onde eletrodos, conectados a um gerador de pulso, são cirurgicamente implantados em alvos específicos do cérebro permitindo a articulação dos padrões de condução do potencial de ação dos neurônios até determinadas regiões. Trata-se de um recurso terapêutico seguro e efetivo, melhorando disfunções motoras e reduzindo tremores, além de permitir o ajuste adequado para cada indivíduo, restringindo os efeitos colaterais associados à medicação. Ainda, assim, o desenvolvimento de mais pesquisas sobre o tema é de grande importância de forma a tornar esse tratamento mais acessível, com maior previsibilidade no longo prazo, além de reduzir os principais riscos associados.

References

ASCHERIO, A.; SCHWARZSCHILD, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. v. 15, n. 12, p. 1257–1272, nov. 2016.

BALESTRINO, R.; SCHAPIRA, A. H. V. Parkinson disease. Eur J Neurol., v. 27, n. 1, p. 27–42, nov. 2019.

BAUMGARTNER, A. J. et al. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev., v. 45, n. 4, p. 2593–2613, mai. 2022.

BENTO, F. A. M. et al. Effect of overarticulation technique in voice and speech of individuals with Parkinson’s disease with deep brain stimulation. Audiol Commun Res, v. 24, e2008, sep. 2019.

BERNARDO, W. M.; RUBIRA, C.; SILVINATO, A. Deep brain stimulation in parkinson disease. Rev. Assoc. Med. Bras., São Paulo, v. 65, n. 4, p. 541-546, mai. 2019.

BEZDICEK, et al. The Instrumental Activities of Daily Living in Parkinson’s Disease Patients Treated by Subthalamic Deep Brain Stimulation. Front Aging Neurosci., v. 14, n. 886491, 2022.

BLOEM, B. R.; OKUN, M. S.; KLEIN, C. Parkinson’s disease. Lancet, v. 397, n. 10291, p. 2284-2303, jun. 2021.

BOUTET, A. et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun., v. 12, n. 1, p. 3043, may 2021.

BOVOLENTA, T. et al. Average annual cost of Parkinson’s disease in São Paulo, Brazil, with a focus on disease-related motor symptoms. Clin Interv Aging., v. 12, p. 2095–2108, dec. 2017.

BURNS, M. R. et al. Advances and Future Directions of Neuromodulation in Neurologic Disorders. Neurol Clin., v. 39, n. 1, p. 71–85, feb. 2021.

CABREIRA, V.; MASSANO, J. Doença de Parkinson: Revisão Clínica e Atualização. Acta Med Port. v. 32, n. 10, p. 661-670, 2019.

CILIA, R. et al. Natural history of motor symptoms in Parkinson’s disease and the long-duration response to levodopa. Brain, Oxford, v. 143, n. 8, p. 2490–2501, aug, 2020.

CONWAY, Z. J. et al. Alternate Subthalamic Nucleus Deep Brain Stimulation Parameters to Manage Motor Symptoms of Parkinson’s Disease: Systematic Review and Meta-analysis. Mov Disord Clin Pract., Hoboken, v. 6, n. 1, p. 17-26, nov. 2018.

DE BONI, L. et al. Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol., v. 143, n. 4, p. 453–469, feb. 2022.

DE LUCCA, M. E. T. et al. Quality of life of patients with Parkinson’s disease: a comparison between preoperative and postoperative states among those who were treated with deep brain stimulation. Arq. Neuro-Psiquiatr., v. 80, n. 4, p. 391–398, abr. 2022.

DE OLIVEIRA, L. M. et al. Deep Brain Stimulation in Patients With Mutations in Parkinson’s Disease–Related Genes: A Systematic Review. Mov Disord Clin Pract., v. 6, n. 5, p. 359–368, jun. 2019.

DORSEY, E. R. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., v. 17, n. 11, p. 939–953, nov. 2018.

FREY, J. et al. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol., v. 13, mar. 2022.

GANGULY, J. et al. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Frontiers in Neuroscience, v. 14, 5 jun. 2020.

HENDERSON, M. X.; TROJANOWSKI, J. Q.; LEE, V. M.-Y. α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett., v. 709, p. 134316, set. 2019.

JANKOVIC, J.; TAN, E.K. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry, v. 91, n. 8, p. 795-808, jun 2020.

KARCESKI, S. Parkinson disease. Neurology, v. 95, n. 4, p. e436–e438, jul. 2020.

KOGAN, M.; MCGUIRE, M.; RILEY, J. Deep Brain Stimulation for Parkinson Disease. Neurosurg Clin N Am., Philadelphia, v. 30, n. 2, p. 137-146, apr. 2019.

KOKKONEN, A. et al. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Braz J Anestesiol., Orlando, v. 260, p. 1-15, jul. 2022.

KRAUSS, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol., London, v. 17, n. 2, p. 75-87, feb. 2021.

LIMOUSIN, P.; FOLTYNIE, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol, v. 15, n. 4, p. 234–242, 18 feb. 2019.

LIZAMA, B. N.; CHU, C. T. Neuronal autophagy and mitophagy in Parkinson’s disease. Mol Aspects Med., v. 82, p. 100972, dec. 2021.

LLIBRE-GUERRA, J. J. et al. Prevalence of parkinsonism and Parkinson disease in urban and rural populations from Latin America: A community based study. Lancet Reg Health Am., v. 7, p. 100136, mar. 2022.

MALVEA, A. et al. Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook. Biomed Eng Lett., v. 19, n. 12, p. 303 – 3016, apr. 2022.

MEHRA, S.; SAHAY, S.; MAJI, S. K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim Biophys Acta Proteins Proteom., v. 1867, n. 10, p. 890–908, out. 2019.

MONTEMURRO, N. et al. New Targets and New Technologies in the Treatment of Parkinson’s Disease: A Narrative Review. Int J Environ Res Public Health., v. 19, n. 14, p. 1-18, jul. 2022.

NTETSIKA, T.; PAPATHOMA, P.-E.; MARKAKI, I. Novel targeted therapies for Parkinson’s disease. Mol Med., v. 27, n. 1, feb. 2021.

OU, Z. et al. Global Trends in the Incidence, Prevalence, and Years Lived with Disability of Parkinson’s Disease in 204 Countries/Territories from 1990 to 2019. Front Public Health, v. 9, dec. 2021.

PARASTARFEIZABADI, M.; KOUZANI, A. Z. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil., v. 14, n. 1, p. 79, ago. 2017.

PERALTA, M.; JANNIN, P.; BAXTER, J. S. H. Machine learning in deep brain stimulation: a systematic review. Artif Intell Med., v. 122, p. 102198, dec. 2021.

POPPELEN, et al. Combined and Sequential Treatment with Deep Brain Stimulation and Continuous Intrajejunal Levodopa Infusion for Parkinson’s Disease. J Pers Med., v. 11, n. 547, 2021.

RACKI, V. et al. Cognitive Impact of Deep Brain Stimulation in Parkinson’s Disease Patients: A Systematic Review. Front Hum Neurosci., Lausanne, v. 16, p. 1-9, may. 2022.

RADHAKRISHNAN, D. M.; GOYAL, V. Parkinson's disease: A review. Neurol India, v. 66, n. 7, p. 26-35, mar. 2018.

SABA, R. A. et al. Guidelines for Parkinson’s disease treatment: consensus from the Movement Disorders Scientific Department of the Brazilian Academy of Neurology – motor symptoms. Arq Neuropsiquiatr., v. 80, n. 3, p. 316-329, mar. 2020.

SIMON, D. K.; TANNER, C. M.; BRUNDIN, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med., v. 36, n. 1, p. 1–12, feb. 2020.

TAN, Y. Y,; JENNER, P.; CHEN, S. D.; Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease: Past, Present, and Future, J Parkinsons Dis, v. 12, n. 2, p. 477 – 493, Jan, 2022.

TARSY, D.; SPINDLER, M.A Intial pharmacologic treatment of Parkinson disease. 2022. Disponível em: https://www.uptodate.com/contents/initial-pharmacologic-treatment-of-parkinson-disease?search=drogas%20dopaminergicas&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Acesso em: 29 de agosto de 2022.

TIERNEY, T. S. Deep brain stimulation foundations and future trends. Front Biosci., v. 23, n. 1, p. 162–182, 2018.

WEERASINGHE, G. et al. Optimal closed-loop deep brain stimulation using multiple independently controlled contacts. PLoS Comput Biol., v. 17, n. 8, p. e1009281, ago. 2021.

WONG, J. K. et al. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Parkinsonism Relat Disord., v. 58, p. 56–62, jan. 2019.

WORLD HEALTH ORGANIZATION. World health statistics. 2020, Monitoring health for the SDGs, Sustainable Development Goals. Geneva, Switzerland: World Health Organization, 2020. Dispoível em: https://apps.who.int/iris/handle/10665/332070. Acesso em: 28 de agosto de 2022.

YADAV, A. P.; NICOLELIS, M. A. L. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord., v. 32, n. 6, p. 820–832, mai. 2017.

YANG, W. et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis., v. 6, n. 1, 9 jul. 2020.

Published

2022-09-19

Issue

Section

Original Papers