Reliability of portable electrical impedance myograph SKULPT® for morphological measures of vastus lateralis/ Confiabilidade da impedância elétrica do miógrafo portátil SKULPT® a partir de medidas morfológicas do vastus lateralis


  • Ewertton de Souza Bezerra
  • Fábio Juner Lanferdini
  • Morgana Lunardi
  • Rafael Luiz Sakugawa
  • Rômulo de Oliveira Sena
  • Fernando Diefenthaeler



Muscle quality, portable electrical impedance, vastus lateralis.


New devices with clinical applicability are needed to provide fast and precise diagnostics. In this way, the aim of this study was to verify the reliability of the portable electrical impedance myograph (PEIM) Skulpt® for morphological measures of the vastus lateralis (VL). MATERIALS AND METHODS: A cross-sectional evaluation was designed on an independent limb to verify reliability between the PEIM Skulpt® and ultrasound (US) for VL muscle morphological measures. Twelve health men (age=32.17±8.90 years) participated in the study, being evaluated muscle quality (MQ) and fat mass (%FAT) with the PEIM on the frontal thigh position, and echo intensity (EI) and muscle and fat thickness (MT and FT) with the US. RESULTS: Equipment reliability (US vs. PEIM) indicated a moderate correlation [r=-0.53; p=0.770] between MQ and EI. Conversely, intra-rater reliability indicated moderate consistency for EI (p=0.021) and excellent for MT (p=0.008) and FT (p<0.001). In addition, excellent consistency was indicated for MQ (p<0.001) and %FAT (p<0.001). Proposed equations were applied in the contralateral lower limb (n=12). Subsequently, a Bland-Altman plot presented lower bias and higher agreement limits for both adjustment equations for PEIM between the MT and FT with MQ and %FAT, respectively. CONCLUSION: In summary, our results indicate moderate intra-rater reliability consistency for EI, excellent for MT and FT, and excellent for MQ, and %FAT. In addition, our proposed adjustment equation presents clinical application to control %FAT and MQ with different possibilities of application in adults, as it can be applied in aesthetics, health control, and even physiotherapeutic treatments.


AKAGI, R.; SUZUKI, M.; KAWAGUCHI, E.; MIYAMOTO, N.; YAMADA, Y.; EMA R. Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Archives of Gerontology and Geriatrics, v. 75, p. 185-190, 2018. doi:10.1016/j.archger.2017.12.012

BJORNSEN, T. et al. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scandinavian Journal of Medicine & Science in Sports, v. 26 n. 7, p. 755-763, 2016. doi:10.1111/sms.12506

BOSY-WESTPHAL, A.; JENSEN, B.; BRAUN, W.; POURHASSAN, M.; GALLAGHER, D.; MULLER, M. J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. European Journal of Clinical Nutrition, v. 71, n. 9, p. 1061-1067, 2017. doi:10.1038/ejcn.2017.27

DE BOER, M. D. et al. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. European Journal of Applied Physiology, v. 104, n. 2, p. 401-407, 2008. doi:10.1007/s00421-008-0703-0

DUREN, D. L. et al. Body composition methods: comparisons and interpretation. Journal of Diabetes Science and Technology, v. 2, n. 6, p. 1139-1146, 2008. doi:10.1177/193229680800200623

FRANCHI, M. V. et al. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scandinavian Journal of Medicine & Science in Sports, v. 28, n. 3, p. 846-853, 2018. doi:10.1111/sms.12961

GONZALES, J. M.; GALPIN, A. J.; MONTGOMERY, M. M.; PAMUKOFF, D. N. Comparison of lower limb muscle architecture and geometry in distance runners with rearfoot and forefoot strike pattern. Journal of Sports Sciences, v. 37, n. 19, p. 2184-2190, 2019. doi:10.1080/02640414.2019.1626050

GRAYBEAL, A. J.; MOORE, M. L.; CRUZ, M. R.; TINSLEY, G. M. Body Composition Assessment in Male and Female Bodybuilders: A 4-Compartment Model Comparison of Dual-Energy X-Ray Absorptiometry and Impedance-Based Devices. Journal of Strength and Conditioning Research, v. 34, n. 6, p. 1676-1689, 2020. doi:10.1519/JSC.0000000000002831

ISHIDA, Y.; CARROLL, J. F.; POLLOCK, M. L.; GRAVES, J. E.; LEGGETT, S. H. Reliability of B-mode ultrasound for the measurement of body fat and muscle thickness. American Journal of Human Biology, v. 4, n. 4, p. 511-520, 1992. doi:10.1002/ajhb.1310040410

JONES, E. J.; BISHOP, P. A.; WOODS, A. K.; GREEN, J. M. Cross-sectional area and muscular strength: a brief review. Sports Medicine, v. 38, n. 12, p. 987-994, 2008. doi:10.2165/00007256-200838120-00003

KOO, T. K.; LI, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, v. 15, n. 2, p. 155-163, 2016. doi:10.1016/j.jcm.2016.02.012

LANFERDINI, F. J.; MANGANELLI, B. F.; LOPEZ, P.; KLEIN, K. D.; CADORE, E. L.; VAZ, M. A. Echo Intensity Reliability for the Analysis of Different Muscle Areas in Athletes. Journal of Strength and Conditioning Research, v. 33, n. 12, p. 3353-3360, 2019. doi:10.1519/JSC.0000000000003063

LI, R. et al. Costamere remodeling with muscle loading and unloading in healthy young men. Journal of Anatomy, v. 223, n. 5, p. 525-536, 2013. doi:10.1111/joa.12101

LIN, Y. C.; FOK, L. A.; SCHACHE, A. G.; PANDY, M. G. Muscle coordination of support, progression and balance during stair ambulation. Journal of Biomechanics, v. 48, n. 2, p. 340-347, 2015. doi:10.1016/j.jbiomech.2014.11.019

PALMER, T. B.; AKEHI, K.; THIELE, R. M.; SMITH, D. B.; THOMPSON, B. J. Reliability of panoramic ultrasound imaging in simultaneously examining muscle size and quality of the hamstring muscles in young, healthy males and females. Ultrasound in Medicine & Biology, v. 41, n. 3, p. 675-684, 2015. doi:10.1016/j.ultrasmedbio.2014.10.011

PILLEN, S.; VAN ALFEN, N. Skeletal muscle ultrasound. Neurological Research, v. 33, n. 10, p. 1016-1024, 2011. doi:10.1179/1743132811Y.0000000010

REEVES, N. D.; MAGANARIS, C. N.; LONGO, S.; NARICI, M. V. Differential adaptations to eccentric versus conventional resistance training in older humans. Experimental Physiology, v. 94, n. 7, p. 825-833, 2009. doi:10.1113/expphysiol.2009.046599

RUAS, C. V.; PINTO, R. S.; LIMA, C. D.; COSTA, P. B.; BROWN, L. E. Test-Retest Reliability of Muscle Thickness, Echo-Intensity and Cross Sectional Area of Quadriceps and Hamstrings Muscle Groups Using B-mode Ultrasound. International Journal of Kinesiolology & Sport Science, v. 5, n. 1, p. 35-41, 2017. doi:10.1016/j.radi.2017.03.011

SANTOS, R.; ARMADA-DA-SILVA. P. A. S. Reproducibility of ultrasound-derived muscle thickness and echo-intensity for the entire quadriceps femoris muscle. Radiography (Lond), v. 23, n. 3, p. e51-e61, 2017. doi:10.1016/j.radi.2017.03.011

SCHWENK, M.; GOGULLA, S.; ENGLERT, S.; CZEMPIK, A.; HAUER, K. Test-retest reliability and minimal detectable change of repeated sit-to-stand analysis using one body fixed sensor in geriatric patients. Physiological Measurement, v. 33, n. 11, p. 1931-1946, 2012. doi:10.1088/0967-3334/33/11/1931

VANSANT, G.; VAN GAAL, L.; DE LEEUW, I. Assessment of body composition by skinfold anthropometry and bioelectrical impedance technique: a comparative study. JPEN Journal of Parenteral and Enteral Nutrition, v. 18. n. 5, p. 427-429, 1994. doi:10.1177/0148607194018005427

WAGNER, D. R. Ultrasound as a tool to assess body fat. Journal of Obesity, v. 2013, p. 280713, 2013. doi:10.1155/2013/280713

WAGNER, D. R.; TERAMOTO, M.; JUDD, T.; GORDON, J.; MCPHERSON, C.; ROBISON, A. Comparison of A-mode and B-mode Ultrasound for Measurement of Subcutaneous Fat. Ultrasound in Medicine & Biology, v. 46. n. 4, p. 944-951, 2020. doi:10.1016/j.ultrasmedbio.2019.11.018

WATANABE, Y.; IKENAGA, M.; YOSHIMURA, E.; YAMADA, Y.; KIMURA, M. Association between echo intensity and attenuation of skeletal muscle in young and older adults: a comparison between ultrasonography and computed tomography. Clinical Interventions in Aging, v. 13, p. 1871-1878, 2018. doi:10.2147/CIA.S173372

WEIR, J. P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, v. 19, n. 1, p. 231-240, 2005. doi:10.1519/15184.1

ZHOU, Q.; LAM, K. H.; ZHENG, H.; QIU, W.; SHUNG, K. K. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Progress in Materials Science, v. 66, p. 87-111, 2014. doi:10.1016/j.pmatsci.2014.06.001




How to Cite

Bezerra, E. de S., Lanferdini, F. J., Lunardi, M., Sakugawa, R. L., Sena, R. de O., & Diefenthaeler, F. (2021). Reliability of portable electrical impedance myograph SKULPT® for morphological measures of vastus lateralis/ Confiabilidade da impedância elétrica do miógrafo portátil SKULPT® a partir de medidas morfológicas do vastus lateralis. Brazilian Journal of Development, 7(4), 33910–33923.



Original Papers