Atividade das enzimas sod, cat e apx e metabolismo dos lipídeos de membranas em dois cultivares de feijão-de-corda (Vigna unguiculata L. Walp) em condições de estresse salino / Sod, cat and apx enzyme activity and membrane lip metabolism in two cultivars of rice feijo (Vigna unguiculata L. Walp) under salt stress

Authors

  • Eliane Almeida de Lima Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Luis Flávio Mendes Saraiva
  • Micheline Soares Costa Oliveira
  • Larissa Linhares Carvalho Mendes
  • Mirle Thais Aguiar Carneiro
  • Ramyres Diego Lima de Andrade
  • Fernando Monteiro de Paula

DOI:

https://doi.org/10.34117/bjdv.v7i5.29773

Keywords:

Feijão, Lipídios, Salinidade, Epace.

Abstract

O feijão-frade (Vigna unguiculata L. Walp) é um alimento básico para as populações pobres do Norte e Nordeste do Brasil, devido às suas boas qualidades nutricionais, com os seus altos teores de proteínas e baixo custo de produção que evidencia a sua importância social e económica. A salinidade é um dos grandes problemas da agricultura mundial e afecta especialmente esta cultura, induzindo inibições no crescimento e na produtividade. No presente trabalho foram utilizadas sementes de duas cultivares (Epace 10 e Epace 11) de feijão-frade. O trabalho tinha como objectivo avaliar os efeitos do stress salino no metabolismo do foliar lipídico das membranas reactivas, bem como a defesa que essas plantas utilizam, a nível enzimático, para destruir as espécies de oxigénio que são produzidas quando estas plantas são expostas a diferentes concentrações de sal. De acordo com o conteúdo de lípidos totais, a condutividade eléctrica e a eficiência fotoquímica, as plântulas da cultivar Epace 10. O conteúdo de lípidos totais foi reduzido, principalmente para a cultivar Epace 11, por acção da salinidade, devido a uma redução dos lípidos plastificados, como o monogalactosildiacilglicerol (MGDG), o diacilgalactosildiaciglicerol (DGDG) e o fosfatidil glicerol (PG). Estas categorias de lípidos reduzidos explicariam, de certa forma, a redução da eficiência fotoquímica em resposta à degradação do ácido gordo polinsaturado, por exemplo, os ácidos linoleico e linolénico, presentes nas membranas. O aumento da perda de electrólitos associada à redução do conteúdo de lípidos polares sugere uma maior vulnerabilidade das plântulas da cultivar Epace 11 sob maiores concentrações de sal, em comparação com a cultivar Epace 10 nas mesmas condições, com a consequente perda de produtividade. As elevadas taxas de peroxidação dos lípidos (medidas através da formação do complexo MDA-TBA), para a cultivar Epace 11, confirmam a menor eficiência desta cultivar na eliminação dos radicais livres formados em resposta ao stress salino. Os resultados das análises das enzimas antioxidantes (SOD, CAT e APX) evidenciaram aumentos na actividade da SOD, CAT e APX para Epace 10 e da SOD e APX para Epace 11. As plantas da cultivar Epace 10 tinham o sistema SOD-CAT bem como o sistema SOD APX para eliminação de formas reactivas de oxigénio, enquanto que as plantas da cultivar Epace 11 só se apresentavam como protecção à acção dos radicais livres, o sistema SOD-APX, mostrando, uma menor eficiência no mecanismo de desintoxicação celular, tornando-se consequentemente mais susceptíveis aos danos causados pelo excesso de radicais livres.

 

References

ALLEN, S.G.; DOBRENZ, A.K. & BARTELS, P.G. Physiological response of salt tolerant and non-tolerant alfalfa to salinity during germination. Crop Sci. 26: 1004 – 1008, 1986.

ARAÚJO, J.P.P. & WATT, E.E. O caupi no Brasil. IITA/EMBRAPA. Brasília, DF. 722p. 1988.

ASADA, K. Production of active oxygen species in photosynthetic tissue. In: Cause of Photooxidative Stress and Amelioration of Defense Systems in Plants.Ch Foyer, PM Mullineaux, eds, CRC, Boca Raton, FL, pp 77-104. 1994.

AYRES, R.S., WESTCOT, D.W. A qualidade da água para irrigação. Campina Grande, UFPB. 218p. 1991.

AZAIZEH, H.; GUNSE, B; & STEUDLE, E. Effects of NaCl and CaCl2 on water transport across root cell of maize (Zea mays L.) seedlings. Plant Physiology, 99: 886-894, 1992.

AZIZ A. & LARHER F. (1998). Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brasinca napus L. Journal of Plant Physiology. 153: 754-762.

BERNSTEIN, L., FRANÇOIS, L.E. & CLARK, R.A. Interactive effects of salinity and fertility on yields of grains and vegetables. Agron. J., 66: 412-421, 1974.

BHATTACHARYA, A., GHOSAL, S., BHATTACHARYA, S.H. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic foot shock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. Journal of Ethnopharmacology. V.74: 1-6.2001.

BLUM A., EBERCON, A. Cell Membrane Stability as a measure of drought and heat tolerance in wheat. Crop Science. V.21: 43-47. 1981.

BOR, M.., Ozdemir, F., Turkan, I.. The effect of salt stress on lipid peroxidation and antioxidants in leaves of s8ggar beet Beta vulgaris L. and wild beet Beta maritime L. Plant science.v.164: 77-84.2003

BORSANI, O., VAPUESTA, V., BOTELLA, M. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology. v. 126: 1024-1030.2001a.

BORSANI, O., DIAZ. P., AGIUS, M.F., VALPUESTA, V., MONZA, J. Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in lotus comiculatus leaves. Plant Science.v.161: 757-763. 2001b.

BOWLER, C. AND VAN MONTAGUE, M. AND INZÉ, D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology. v.43:83-113.1992.

BOYER, J.S. Effects of osmotic water stress on metabolic rates of cotton plants with open stomats. Plant Physiol. 40: 229-234, 1965.

BREUSEGEM, F.V., VRANOVÁ, E., DAT, J.F., INZÈ, D. The role od active oxygen species in plant signal transduction. Plant Science. V.161: 405-414. 2001.

CACHORRO,P.; ORTIZ, A. & CERDA, A. Implications of calcium nutrition on the response of Phaseolus vulgaris l. to salinity. Plant and soil, 159:205-212, 1994.

CAKMAK, I. HORST, J.H. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum. V.83:463-468. 1991.

CARTER, D.L. Problems of salinity in agriculture. In: Plants in Saline Environmental. A. Poljakoff – Mayber & J. Gale (eds.). Springer – Verlag, New York, p. 25-35. 1975.

CARTER, D.L. Salinity and Plant productivity. In: Chemical Rubber Co., Handbook Series in Nutrition and food (in Press), 1981.

CHAPMAN, V.J. The Salinity problem in general, its importance and distribution with special reference to natural halophytes. IN: POLKAKOFF-MAYBER, A. & GALE, J. (Eds). Plants in saline environments. NY. Heidelberg, Berlin, Springerverlag, p: 7-24, 1975.

CHESSEMEN, J.M. (1988) Mechanisms of salinity tolerance in plants. Plant physiol. 87: 547-550

CHETAL, S.; Wagle, S. D & Nainawatee, H.S. Phospholipid changes in wheat and barley leaves under water stress. Phitochemistry, 21: 51-53. 1992.

COELHO, M. A. Aspectos da dinâmica da água em solos sódicos e salino-sódicos. Ciência Agronômica, 14 (1/2): 61-68, 1983a.

COELHO, M.A. Variabilidade espacial de características físicas e químicas em solo salino sódico. Ciência Agronômica, 14 (1/2): 149-155, 1983b.

DALTON, D.A., JOYNER, S.L., BECANA, M., ITURBE-ORMAETXE, I. E CHATFIELD, J.M. Antioxidant defenses in the peripheral cell layers of legume root nodules. Plant Physiol., 116, 37-43. 1996.

Dakma W.S.; Zarrouk M. E Cherif A. – Effects of drought-stress lipids in rape leaves. Phytochemistry, 40(5): 1383-1386, 1995.

D´Arcy-Lameta A; Ferrari-Iliou R.; Pham Thi A T. & Zuily-fodil Y. – Involvement of photosynthetic pigments in total leaf lipids extracts sensitivity to photoperoxydaton. Plant Physiology and Biochemistry 34(6): 817-825, 1996.

DIONISIO-SESE, M.L., TOBITA, S. Antioxidant responses os rice seedlings to salinity stress. Plant Physiology. V.135:1-9. 1998.

Duxbury. Legge R.L., Polyath G., Barber F. & Thompson J.E. Alterations in membrane protein conformation in response to senescence related changes. Phytochem., 30(1):63-68, 1991.

ELENKOV, I.; STEFANOV, K.; DIMITRINOVA-KONAKLIEVA, S. & POPOV, S. Effect of salinity on lipid composition of Cladophora vagabunda. Photochemistry .42:39-44.1996.

ENYEDI, A.J., YALPANI, N., SILVERMAN, P., RASKIN, I. Localization, conjugation and function of salicylic acid in tobacco mosaic virus. Pro. Natl. Acad. Sci. USA. 89, 2480 – 2484. 1992.

EPSTEIN, E. & RAINS, D.W. Advances in salt tolerance. Plant and soil, 99:17-29, 1987.

EPSTEIN, E., NORLYN, J.D., RUSH, D.W., KINGBURY, R.W., KELLY, D.B., CUNNINGHAN, G.A. & WRONA, A.F. Saline culture of crops: A genetic approach. Science, 210: 399-404, 1980.

FASSBENDER, H. W. & BORNEMISZA, E. Química dos suelos com énfasis em suelos de América Latina, 2ª ed. San José, Costa Rica, IICA, 1987. 420p.

FAGERIA, N.K. e GHEVY, H.R. (1997) Melhoramento genético das culturas e seleção de cultivativares. In: Mnejo e controle da salinidade na agricultura irrigada. Hans Raj Ghevy, José Elenildo Queiroz e José Francismar de Medeiros eds. UFPB, Campina Grande-Brasil. Pp 363-383

FENTON, H.J.H. Oxidation of tartaric acid in the presence of iron. Journal of Chemical Society. V.65:899. 1894.

FLOWERS, T.J.; TROKE, P.F. & VEO, A.R. (1997). The mechanisms of salt tolerance in halophytes. Ann. Rev. Plant. Physiol. 28:89-121.

FRANÇOIS, L.E., DONOVAN, T. & MAAS, E.V. Salinity effects on seed yield, growth, and germination of grain sorghum. Agron. J., 76: 741-744,1984.

FREIRE-FILHO, F.R., ARAÚJO A.G. & CARDOSO, J. C. Vigna unguiculata (L.) Walp. nomenclatura científica e nomes vulgares. Resumo da I Reunião Nacional de Pesquisa do Caupi. Goiânia: EMBRAPA, 1:43-44, 1982.

FRIDOVICH, I. Quantitative aspects of the production of superoxide anion radial by milk xanthine oxidase. Journal of Biological Chemistry. V245:4053-4057 .1986.

GALE, J. Water balance and gas exchange of plants under saline conditions. In: POLJAKOFF-MAYBER, A. & GALE, J., eds. Plants in saline environments. New York. Heidelberg. Berlin, Springer-Verlag, 1975. P. 168-185.

GOSSETT, D.R., BANKS, S.W., MILLHOLLON, E.P., LUCAS, M.C. Antioxidant responses to NaCl stress in a control and NaCl-tolerant cotton cell line grown in the presence of paraquat, buyhionine sulfoximine, and exogenous gluthadione. Plant Physiology. V.112: 803-809. 1996.

GRANT, J.J., LOAKE, G.J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology. V.124:21-29. 2001.

GREENWAY, H. & MUNNS, R. Mechanisms of salt tolerance in non-halophytes. Ann. Ver. Plant Physol., 31: 149-190, 1980.

HAMILTON, E.W.III, HECKATHORN, S. A. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small Heat Shock proteins, whereas complex ii is protected by proline and betaine. Plant Physiology. v. 126: 1266-1274.2001.

Harwood J.L., Jones A.V.H.M. & Thomas H. Leaf senescence in a non-yellowing mutant of Fetuca pratensis III. Total acyl lipids of leaf tissue during senescence. Planta, 156:152-157, 1982.

HERNANDÉZ, J. A., CORPAS, F.J., GOMEZ, M., DEL RIO, L.A., SEVILLA, F. Salt-induced oxidative stress mediated by active oxygen species in pea leaf mitochondria. Physiol. Plant. 89, 103-110. 1995.

HOFFMAN, G.J. & RAWLINS, S.L. Growth and water potential of root crops as influenced by salinity and relative humidity. Agron. J., 63: 877-880, 1971.

HOFFMAN, G.L., RAWLINS, S.L., GARBER, M.J. & CULLEN, E.M. Water relations and growth of cotton as influenced by salinity and relative humidity. Agron. J., 63: 822-826, 1971.

Hubac C., Guerrier D., Ferran J. & Tremolières A. Change of leaf lipid composition during water stress in two genotypes of Lupinus albus resistant or susceptible to drgought Plant Physiol. Biochem. 27(5):737-744, 1989.

JUDEL, W.S., CAMPBELL, C.S., KELLOGG, E.A. & STEVENS, P.F. Plant Systematics: A phylogenetic approach. Sinauer Associates, Inc. Publishers. Suderland, Massachusetts, USA. 464 p. 1999.

LACERDA, C.F. Efeitos da salinidade no desenvolvimento e composição mineral do feijão-de-corda (Vigna unguiculata (L.) Walp.) e utilização do Ca2+ como meio para minorar tais efeitos. Dissertação de mestrado DCS/CCS/UFC. Fortaleza, Ceará. 87p. 1995.

LAUCHLI, A. & EPSTEIN, E. Mechanisms of salt tolerance in plants. California Agriculture, 36 (10): 18-20, 1984.

LUNIN, J.; GALLANTIN, M.H. & BATCHELDER, A.R. Saline irrigation of several vegetables crops at various growth stages. L. Effects on yields. Agron. J., 55(2): 107-110, 1963.

MANN, T., AND KLEILIN, D. Homocuprein and heptacuprein, copper-protein compounds of blood and liver in mammals. Proceedings of Royal Society of London. V. 126:303-315. 1938.

MAAS, E.V. & HOFFMAN, G. J. Crop salt tolerance-current assessment. ASCE J. Irrig. Drain DIV., 103: 115-134, 1977.

MARTINEZ, C.A., LOUREIRO, M.E., OLIVA, M.A., MAESTRI, M. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative stress and water stress. Plant Science. v.160: 505-515. 2001.

MARTINEZ, V., CERDA, A. & FERNANDEZ, F.G. Salt tolerance of four tomato hybrids. Plant and soil, 97: 233-242, 1987.

MASS, E.V.; HOFFMAN, G.F.; CHABA, G.D.; POSS, J.A. & SHANNON, M.C. Salt sensitivity of corn at various growth stages. Irrig. Sci.,4: 45-57, 1983.

MASS, E.V. Crop tolerance. California Agriculture, 36(10): 20-21, 1984.

McKERSIE, B.D. Plant Environment Interactions and Stress Physiology: module 2. In: Penn State College of Agricultural Sciences, Courses www.agronomy.psu.edu/courses/agro518/contends.htm-Univ. of Guelph. 1996.

MEIRI, A.; MOR, E. & POLJAKOFF-MAYBER, Effect of time of exposure to salinity on growth, water status, and salt accumulation in bean plants. Ann. Bot., 34: 383-391, 1970.

MILLER, E.C. Plant Physiology. Ed. Mcgraw-hill Book Company, 1938. 1201p.

MCCORD, J. M. AND FRIDOVICH, I. Superoxide dismutase, an enzymatic function for erythrocuprein. Journal of Biological Chemical. V.244:6049-6055. 1969.

Monteiro de Paula, F., Pham Thi, A. T., Vieira da Silva, J., Justin, A. M., Demandre, C. & Mazliak, P. Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant sci., 66, 185-193, 1990.

Monteiro de Paula, F., Pham Thi, A . T., Zuily-Fodil. Y., Ferrarri-Iliou R., Vieira da Silva, J., Mazliak, P. Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata. Plant Physiol. Biochem. 31(5)707-715, 1993.

NIEMAN. R.H. & POULSEN, L.L. Interactive effects of salinity and atmospheric humidity on the growth of bean and cotton plants. Bot. Gaz., 128(1): 69-73, 1967.

NIU, X.; BRESSAN, R.A.; HASEGAWA, P.M. & PARDO, J.M. (1995) Lon homeostasis in Nacl stress environments. Plant Physiol. 109:735-742

NORLYN, J.D. & EPSTEIN, E. Variability in salt tolerance of four triticale lines at germination and emergence. Crop Sci., 24: 1090-1092, 1984.

OLIVEIRA, J.P. & CARVALHO, A.M. A cultura do caupi nas condições de clima e de solo dos trópicos úmidos e semi-árido do Brasil. In: O caupi no Brasil. Brasília: IITA/EMBRAPA. P. 63-69. 1988.

PECK, A. J. Effects of land use on salt distribuition in soil. In: Plants in Saline Environments. Poljakoff-Mayber, A. & Gale, J. (eds.) New York. Heibelberg, Berlim, Springer-Verlag, p. 77-90. 1975..

PEARSON, G.A. & BERNSTEIN, L. Salinity effects at several growth stages of rice. Agron. J.,51: 654-657, 1959.

PEARSON, G.A.; AYRES, A.D. & BERNSTEIN, D.L. Relative salt tolerance of rice during germination and early seedling development. Soil Sci., 102(3): 151-156, 1996.

Pham Thi A.T. Action de la sécheresse sur les lipides polaires des feuilles de cotonnier (Gossypium hirsutum L.). Bull.Soc.Bot.Fr., 131:89-97, 1984.

Pham Thi, A . T., Borrel-Flood, C., Vieira da Silva, J., Justin, A .M. and Mazliak, P. Effects of water stress of lipid metabolism in cotton leaves. Phytochemistry. 24, 723-727, 1985.

Pham Thi, A. T.; Veeira da Silva, J.; & Mazliak, P. The role of membrane lipids in drought resistance of plants. Bull. Soc. Bot. Fr. Actual. Bot., (1): 99-114, 1990.

Pinho, N. L. J. Étude comparée dês mecanisme physiologiques de la reistance a la sécheresse de cultivars de mil (Pnnisetum americanum L.) et Sorgho [Sorguhum bicolor (L.) Moench] sensibles ou reistant. Université Paris VII. 158p. (Tese de doutorado), 1992

PITMAN, M.G. Transport across the root and shoot/root interactions. In: STAPLES, R.C. & TOENNIESSEN, G.H., EDS. Salinity tolerance in plants. New York, Willey, 1984, p.93-123.

PRIMAVESI, A. Manejo ecológico do solo, Ed. Nobel. 549p. 1987.

PRISCO, J.T. & O’LEARY, J.W. Osmotic and ‘toxic’ effects of salinity on germination of Phaseolus vulgaris L. seeds. Turialba, 20(2): 177-184, 1970.

PRISCO, J.T. & VIEIRA, G.H.F. Effects of NaCl salinity on nitrogenous compounds and proteases during germination of Vigna sinensis seeds. Physiol. Plant., 36: 317-320, 1976.

PRISCO, J.T. Contribuição ao estudo da fisiologia do estresse salino durante a germinação e estabelecimento da plântula de uma glicófita (Vigna unguiculata (L.) Walp). Tese para Professor Titular de Fisiologia Vegetal. Fortaleza, Universidade Federal do Ceara, 1987. 65p.

RICHARDS, L.A. Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory Staff. USA, 1954. 160p.

ROLSTON, D. E., BIGGAR, J.W. & NIELSEN, D. R. Effect of salt on soils. California Agriculture, 36(10): 11-13, 1984.

ROUT, N.P., SHAW, B.P Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science. V.160:415-423. 2001.

SANCHEZ-BLANCO, M.J., BOLARIN, M.C., ALARCON, J.J. & TORRECILLAS, A. Salinity effects on water relations in Lycopersicon esculentum and wild salt tolerance relative species L. pennellii. Physiol. Plant., 83: 269-274, 1991.

SCANDALIOS, J.G. Response of lant antioxidant defense genes to environmental stress. Advances in Genetics. V.28:1-41. 1993.

SCHOENBEIN,C.F. Ueber die Katalytische Wirksamkeit organischer Materien und deren Verbreitung in der pflanzen und thierwelt. J. Prakt. Chem., v.89., p:323-344.1863.

SERRANO, R., RODRIGUEZ-NAVARRO, A. Ion homeostasis during salt stress in plants. Current opinion in cell biology. V.13:399-404. 2001.

SHAINBERG, I. Salinity of soils – Effects of salinity on the physics and chemistry of soils. In: Plants in saline environments, Poljakoff-Mayber, A. & Gale, J. eds.. New york Heidelberg Berlim, Springer-Verlag, 1975. P. 39-55.

SHALHEVET, J.; MORRIS, G.H. & SCROEDER,B.P. (1995) Root and shoot growth response to salinity in maize and soybean. Agron. j. 87(3):512-516

SHANNON, M.C., GRIEVE, C.M. & FRANÇOIS, L.E. Whole-plant response to salinity. In: Plant-environment interactions. WILKINSON, R.E., ed., New York Basel Hong Kong, Marcel-Dekker, 1997. P. 199-244.

SILVEIRA, J.A.G., COSTA, R.C.L., OLIVEIRA, J.T.ª Drought- Induced effects and recovery of nitrate assimilation and nodule activity in cowpea plants inoculated with Bradyrhizobium spp. Under moderate nitrate level. Brazilian Journal of Microbiology. V.32:187-194.2001b

SREENIVASULU, N. et al. Total peroxidase activity and peroxidase isoforms as modified by SALT stress in two cultivars of fox-tail millet with differential SALT tolerance. Plant Science. v.141:1-9. 1999.

SOUZA, M.F. Efeitos da salinidade na expressão gênica de plântulas de feijão-de-corda (Vigna unguiculata (L.) Walp.). Dissertação de mestrado DBBM/CC/UFC. Fortaleza, Ceará. 94p. 1999.

STEELE, W.M. & MEHERA, K.L. Structure, evolution and adaptation to farming systems na environment in Vigna. In: Advances in Legume Science. Summerfield, R.J. & Butting, A.h. (eds.). London Royal Botanical Gardens, V. 1 cap. 7. P. 393-402. 1980.

Stevanovic B., Pham Thi A.T., Monteiro de Paula F. & Vieira da Silva J. Effects of dehydration and rehydration on the polar lipids and fatty acids composition of Ramonda species. Can. Journal of Bot., 70:107-113, 1992.

UNGAR, L.A. The effect of salinity and temperature on seed germination and growth of Hordeum jubatum. Can. J. Bot., 52: 1357-1362, 1974.

UNGAR, L.A. Halophytes see germination. Bot. Rev.,44: 233-264, 1978.

VIEGAS, R.A. & SILVEIRA, J.A.G. (1999) Glutamine synthetase activity and praline accumulation in young cashew plants ( Anacardium occidentale l.)during long-term salt (Nacl) exposure. Physiol. Mol. Biol. Plants.

Vieira da silva j. Water stress, ultra structure and enzyme activy. In Lange

L. Kappen L., Schulze E.D.- Springer-Verlag, Berlin, 207-224, 1976.

WEST,D.W. & FRANÇOIS. L.E. Effects of salinity on germination, growth and yield of cowpea. Irrig. Sci., 3: 169-175, 1982.

WINICOV, I (1998) New molecular approaches to improving salt tolerance in crop plants. Annals of Botany.82: 703-710.

WYN-JONES, R. G., GORHAM, J. & McDONNEL, E. Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Salinity tolerance in Plants. STAPLES, R.C. & TOENNIESSEN, G.H., eds. New York, Willey, 1984. P. 67-76.

ZÁMOCKY, M., REGELSBERGER, G., JAKOPITSCH, C., OBINGER, C. The molecular peculiarities of catalase-peroxidases. FEBS letters. V.492:177-182. 2001.

Zuily-Fodil. Y., Vasquez-Tello, A., Vieira Da Silva, J. Effect of water deficit on cell permeability and on chloroplast integrity. Societé botanique de France. 1990.

ZHU, J-K. Plant Salt Tolerance. Trends in Plant Science. V.6(2): 56-71.2001a

ZHU, J-K. Cell signaling under salt, water and cold stresses. Current opinion in plant biology. V.4:401-406.2001b.

YEO, A.R. & FLOWERS, T.J. Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa L.) varieties differing in salinity resistance. Physiol. Plant., 56: 343-348, 1998.

Published

2021-06-07

How to Cite

de Lima, E. A., Saraiva, L. F. M., Oliveira, M. S. C., Mendes, L. L. C., Carneiro, M. T. A., de Andrade, R. D. L., & de Paula, F. M. (2021). Atividade das enzimas sod, cat e apx e metabolismo dos lipídeos de membranas em dois cultivares de feijão-de-corda (Vigna unguiculata L. Walp) em condições de estresse salino / Sod, cat and apx enzyme activity and membrane lip metabolism in two cultivars of rice feijo (Vigna unguiculata L. Walp) under salt stress. Brazilian Journal of Development, 7(5), 48471–48488. https://doi.org/10.34117/bjdv.v7i5.29773

Issue

Section

Original Papers