MCM-41 molecular sieve: Preparation and application for removal of yellow reactive dye / Peneira molecular MCM-41: Preparação e aplicação para remoção de corante reativo amarelo

Authors

  • Luana do Nascimento Rocha de Paula
  • Gustavo Medeiros de Paula
  • Thiago Rodrigo Barbosa Barros
  • Thianne Silva Batista Barbosa
  • Genaro Zenaide Clericuzi
  • Marta Lígia Pereira da Silva
  • Tellys Lins Almeida Barbosa
  • Meiry Gláucia Freire Rodrigues

DOI:

https://doi.org/10.34117/bjdv.v7i5.30455

Keywords:

Peneira molecular MCM-41, adsorção, corante amarelo reativo BF-3R, água residual.

Abstract

Este trabalho apresenta a síntese da peneira molecular MCM-41, caracterização e avalia o potencial de remoção do corante amarelo reativo de uma solução aquosa. A peneira molecular MCM-41 foi sintetizada usando tratamento hidrotérmico a 150 oC por 96 h e caracterizada por difração de raios X (DRX), Fluorescência de raios X por energia dispersiva (FRX), espectroscopia na região do infravermelho (IV) e microscopia eletrônica de varredura (MEV). O processo de adsorção em batelada a 200 rpm por 24 h foi utilizado para avaliar o potencial da MCM-41 para a adsorção do corante com concentração inicial de corante 50 mg/L e temperatura de 25 oC. Um planejamento fatorial 22 foi utilizado para avaliar os principais efeitos dos valores de pH na faixa de 2,0 a 6,0 e massa (0,25 a 0,75 g) na capacidade do processo de remoção. A análise de DRX evidenciou que a MCM-41 apresentou uma estrutura mesoporosa bem definida. O espectro de IV confirmou a eficiência do CTABr como um modelo usado para direcionar a estrutura da peneira molecular MCM-41 em condições estáticas. A imagem obtida por MEV indicou aglomerados de forma irregular com aspecto esponjoso. Valores de até 94,0 % de eficiência de remoção e 4,22 mg/g de capacidade de remoção foram alcançados nos ensaios, indicando que o uso da MCM-41 tem grande potencial na remoção do corante amarelo.

References

F. Harrelkas, A. Azizi, A. Yaacoubi, A. Benhammou, M.N. Pons, Treatment of textile dye effluents using coagulation – flocculation coupled with membrane processes or adsorption on powdered activated carbon, Desalination. 2009; 235: 330–339.

N. Abidi, E. Errais, J. Duplay, A. Berez, A. Jrad, G. Schäfer, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, Treatment of dye-containing effluent by natural clay, J. Clean. Prod. 2015; 86: 432–440.

Y. Wang, Y. Xie, Y. Zhang, S. Tang, C. Guo, J. Wu, R. Lau, Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer, Chem. Eng. Res. Des. 2016; 114:258–267.

G.Z. Kyzas, M. Kostoglou, Green Adsorbents for Wastewaters: A Critical Review. Materials 2014; 7: 333-364.

D.O. Santos, M.L.N. Santos, J.A.S. Costa, R.A. de Jesus, S. Navickiene,

E.M. Sussuchi, M.E. de Mesquita, Investigating the potential of functionalized

MCM-41 on adsorption of Remazol Red dye, Environ. Sci. Pollut. Res. 2013; 20:

–5035,

N. Rajamohan, M. Rajasimman, Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas Stutzeri, Eng. Technol. Appl. Sci. Res. 2013; 3: 387–390.

Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; J.C., Vartuli; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992; 359: 710-712.

Huiyong, C.; Hongxia, X.; Xianying, C.; Yu, Q.; Experimental and molecular simulation studies of a ZSM-5-MCM-41 micro-mesoporous molecular sieve. Microp. Mesop. Mater. 2009; 118: 396-402.

C. Lee, S. Liu, L. Juang, C. Wang, K. Lin, M. Lyu, Application of MCM-41 for dyes removal from wastewater, J. Hazard. Mater. 2007; 147: 997–1005.

A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chemical Reviews. 1997; 97: 2373–2420.

X. Xiao, F. Zhang, Z. Feng, S. Deng, Y. Wang, Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite, Phys. E Low-Dimensional Syst. Nanostructures. 2015; 65: 4–12.

F. Alrouh, A. Karam, A. Alshaghel, S. El-Kadri, Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids, Arab. J. Chem. 2017; 10: S281–S286.

A. Benhamou, J.P. Basly, M. Baudu, Z. Derriche, R. Hamacha, Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate, J. Colloid Interface Sci. 2013; 404: 135–139.

Paula GM, Paula LNR, Rodrigues MGF. Production of MCM-41 and SBA-15 hybrid silicas from industrial waste. Silicon. 2020.

Paula LNR, Paula GM, Rodrigues MGF. Adsorption of reactive blue BF-5G dye on MCM-41 synthesized from Chocolate clay. Ceramica. 2020; 66: 269-276.

Rodrigues, J.J., Fernandes, F.A.N., Rodrigues, M.G.F. The use of cobalt/ruthenium catalyst supported in SBA-15 in the promotion of Fischer-Tropsch synthesis. Brazilian J Pet Gas. 2020; 14: 007-021, 2020.

Jovelino JR, Rodrigues JJ, Rodrigues M.G.F. SBA-15 molecular sieve: synthesis, characterization, and application in oil/water separation. Brazilian J Pet Gas. 2018; 12:219-227.

Rodrigues JJ, Fernandes FAN, Rodrigues MGF. Co/Ru/SBA-15 catalysts synthesized with rice husk ashes as silica source applied in the Fischer-Tropsch synthesis. Brazilian J Pet Gas. 2018; 12:169-179.

Silva MM, Patrício ACL, Sousa AKF, Rodrigues MGF, Silva MLP. Synthesis and Characterization of MCM-41 By XRD, Adsorption Capacity and Foster Swelling Tests. Mater Sci Forum. 2012; 805: 657–66115.

Nogueira AC, Rodrigues JJ, Lima LA, Rodrigues MGF. Preparation and Characterization of Catalysts Fe/SBA-15 for Fischer-Tropsch Synthesis. Mater Sci Forum. 2015; 805: 678–683.

Rodrigues JJ, Nogueira AC, Rodrigues MGF. Rapid synthesis of mesoporous molecular sieve SBA-15 by different techniques with microwave assistance. Mater Sci Forum. 2015; 805: 684-689.

Lima LA, Menezes VMR, Rodrigues MGF. Use Residue of Bagasse Sugar Canein Synthesis of Molecular sieve MCM-41. Mater Sci Forum. 2014; 798-799: 95–99.

Paula GM, Lima LA, Rodrigues MGF SBA-15 Molecular Sieve Using Clay as Silicon Sources. Mater Sci Forum. 2014; 798-799: 116-120.

Rodrigues JJ, Lima LA, Paula GM, Rodrigues MGF Synthesis and characterization of molecular sieve SBA-15 and catalysts Co/SBA-15 and Ru/Co/SBA-15. Mater Sci Forum. 2014; 798: 100–105.

Rodrigues JJ, Fernandes FAN, Rodrigues MGF Study of Co/SBA-15 catalysts prepared by microwave and conventional heating methods and application in Fischer-Tropsch synthesis. Appl Catal A Gen. 2013; 468: 32–37.

Rodrigues JJ, Pecchi G, Fernandes FAN, Rodrigues MGF. Ruthenium Promotion of Co/SBA-15 catalysts for Fischer–Tropsch synthesis in slurry-phase reactors. J Nat Gas Chem. 2012; 21: 722-728.

Rodrigues JJ, Lima LA, Lima WS, Rodrigues MGF, Fernandes FAN. Fischer-Tropsch Synthesis in Slurry-Phase Reactores using Co/SBA-15 Catalysts. Brazilian J Pet Gas. 2011; 5:149–157.

Sousa BV, Rodrigues MGF, Cano LA, Cagnoli MV, Bengoa JF, Marchetti SG, Pecchi G Study of the effect of cobalt content in obtaining olefins and paraffins using the FischerTropsch reaction. Catal Today. 2011; 172: 152-157.

J.S. Beck, J.C. Vartulli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 1992; 114 10834–10843.

Tien C. Adsorption Calculation and modeling. Boston: Butteworth-Heinemann 1994.

Wu, F., Tseng, R., Huang, S., Juang, R. Characteristics of pseudo-second-order

kinetic model for liquid-phase adsorption: A mini-review. Chem Eng

J. 2009; 151: 1–9.

A.J. Schwanke, D.M.A. Melo, A.O. Silva, S.B.C. Pergher. Use of rice husk ash as only source of silica in the formation of mesoporous materials, Cerâmica. 2013; 59: 181–185.

H. Yang, Y. Deng, C. Du, S. Ji., Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite, Appl. Clay Sci. 2010; 47: 351–355.

S.C.R. Santos, R.A.R. Boaventura. Treatment of a simulated textile wastewater in a sequencing batch reactor ( SBR ) with addition of a low-cost adsorbent, J. Hazard. Mater. 2015; 291: 74–82.

V. Meynen, P. Cool, E.F. Vansant. Verified syntheses of mesoporous materials. Micropor Mesopor Mater. 2009; 125: 170–223.

L.Y. Chen, S. Jaenicke, G.K. Chuah, Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials, Microporous Mater. 1997; 12: 323–330.

L. Huang, Q. Huang, H. Xiao, M. Eic, Effect of cationic template on the adsorption of aromatic compounds in MCM-41, Micropor. Mesopor. Mater. 2007; 98: 330–338.

Brito, L.R.S., Barbosa, T.L.A., Bezerra, J.U.L., Rodrigues, M.G.F. Síntese da zéolita ZSM-5 para ser utilizada como adsorvente na remoção do corante reativo BF-3R: influência do pH. Cap.9, p. 66-78, 2020, Editora Poisson, Belo Horizonte.

Silva, F.N.M., Barbosa, T.L.A., Rodrigues, D.P.A., Rodrigues, M.G.F. Síntese da zeólita SAPO-34 e aplicação na remoção do corante reativo amarelo BF-3R. XXI Congreso Argentino de Catálisis, Santa Fé, Argentina, 2019.

Silva, F.N.M., Araújo, R.N., Barbosa, A.S., Cunha, R.S.S., Rodrigues, M.G.F. Preparação e caracterização de membrana inorgânica com propriedades para remoção de corante amarelo reativo BF – 3R. Cap. 10, p. 93-103, 2020, Editora Poisson, Belo Horizonte.

Published

2021-06-07

How to Cite

Paula, L. do N. R. de, Paula, G. M. de, Barros, T. R. B., Barbosa, T. S. B., Clericuzi, G. Z., Silva, M. L. P. da, Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). MCM-41 molecular sieve: Preparation and application for removal of yellow reactive dye / Peneira molecular MCM-41: Preparação e aplicação para remoção de corante reativo amarelo. Brazilian Journal of Development, 7(5), 53032–53046. https://doi.org/10.34117/bjdv.v7i5.30455

Issue

Section

Original Papers