Caracterização microestrutural de camadas de boretos sobre aço-ferramenta vanadis 10 / Microstructural characterization of boride layers on vanadis 10 tool steel

Authors

  • Anael Preman Krelling
  • Bruna de Freitas Zappelino
  • Jefferson Luis Jerônimo
  • Ivandro Bonetti
  • Alexcier Krawczuk Capitani
  • Elisangela Aparecida dos Santos de Almeida
  • Julio César Giubilei Milan
  • César Edil da Costa

DOI:

https://doi.org/10.34117/bjdv7n8-258

Keywords:

Boretação, Vanadis 10, Propriedades Mecânicas.

Abstract

Tratamento termoquímico de boretação sólida foi realizado em amostras de aço-ferramenta Vanadis 10 a 800 °C e 1000°C por 2 e 6h. A morfologia e estequiometria das camadas formadas foram analisadas por microscopia eletrônica de varredura e difração de raios-X, respectivamente, comprovando a formação de camadas bifásicas de FeB+Fe2B. Quanto maiores os tempos e temperaturas de tratamento, mais espessas as camadas se apresentam e com maior quantidade da fase FeB. A maior espessura atingiu 21,8 ± 1,8 µm para um tratamento realizado a 1000 °C durante 6h. Perfis de microdureza Knoop comprovaram o aumento da dureza na superfície pela formação da camada de boretos. A aderência entre a camada de boretos e o substrato foi avaliada qualitativamente através de testes de indentação Rockwell C e mostrou-se adequada para os tratamentos realizados a 800 °C e inadequada para 1000 °C devido à maior formação de FeB.

 

References

ALMEIDA, E. Surface treatments and coatings for metals . A general overview . 1 . surface treatments , surface preparation , and the nature of coatings. Industrial and Engineering Chemistry Research, v. 40, p. 3–14, 2001.

BÉJAR, M.; MORENO, E. Abrasive wear resistance of boronized carbon and low-alloy steels. Journal of Materials Processing Technology, v. 173, n. 3, p. 352–358, 2006.

CAMPOS, I.; RAMIREZ, G.; VILLAVELAZQUEZ, C.; FIGUEROA, U.; RODRIGUEZ, G. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels. Materials Science and Engineering: A, v. 475, n. 1-2, p. 285–292, 2008.

CAMPOS, I.; ROSAS, R.; FIGUEROA, U.; et al. Fracture toughness evaluation using Palmqvist crack models on AISI 1045 borided steels. Materials Science and Engineering: A, v. 488, n. 1-2, p. 562–568, 2008.

GENEL, K. Boriding kinetics of H13 steel. Vacuum, v. 80, n. 5, p. 451–457, 2006.

GRAZZIOTIN, F.; ZIMMER, C. G.; MACIEL, D. S. Influence of Cooling Rate on Boretizing Process in 0.4%C Steel. Brazilian Journal Of Development, v. 7, n. 3, p. 30642-30652, 2021.

HATAMI, S.; SHAHABI-NAVID, M.; NYBORG, L. Surface preparation of powder metallurgical tool steels by means of wire electrical discharge machining. Metallurgical and Materials Transactions A, v. 43A, n. September, p. 3215–3226, 2012.

JAIN, V.; SUNDARARAJAN, G. Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surface and Coatings Technology, v. 149, n. 1, p. 21–26, 2002.

KASMAN, ?. Impact of parameters on the process response: A Taguchi orthogonal analysis for laser engraving. Measurement, v. 46, p. 2577–2584, 2013.

MÄÄTTÄ, A.; VUORISTO, P.; MÄNTYLÄ, T. Friction and adhesion of stainless steel strip against tool steels in unlubricated sliding with high contact load. Tribology International, v. 34, p. 779–786, 2001.

MARTINI, C.; PALOMBARINI, G.; CARBUCICCHIO, M. Mechanism of thermochemical growth of iron borides on iron. Journal of Materials Science, v. 39, n. 3, p. 933–937, 2004.

NOSAR, N. S.; OLSSON, M. Influence of tool steel surface topography on adhesion and material transfer in stainless steel/tool steel sliding contact. Wear, v. 303, p. 30–39, 2013.

OLSSON, M.; BEXELL, U. Friction characteristics and material transfer tendency in metal powder compaction. Wear, v. 271, p. 1903–1908, 2011.

PETROVA, R. S.; SUWATTANANONT, N. Surface modification of ferrous alloys with boron. Journal of Electronic Materials, v. 34, n. 5, p. 575–582, 2005.

PETROVA, R. S.; SUWATTANANONT, N.; SAMARDZIC, V. The effect of boronizing on metallic alloys for automotive applications. Journal of Materials Engineering and Performance, v. 17, n. 3, p. 340–345, 2008.

SAHIN, S. Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, v. 209, n. 4, p. 1736–1741, 2009.

SILVA, F. J. G.; BAPTISTA, A. P. M.; PEREIRA, E.; et al. Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diamond and Related Materials, v. 11, p. 1617–1622, 2002.

SOBOTOVÁ, J.; JURCI, P.; DLOUHY, I. The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Materials Science and Engineering A, v. 652, p. 192–204, 2016.

TAKTAK, S. Some mechanical properties of borided AISI H13 and 304 steels. Materials and Design, v. 28, n. 6, p. 1836–1843, 2007.

TARAKCI, M.; GENCER, Y.; CALIK, A. The pack-boronizing of pure vanadium under a controlled atmosphere. Applied Surface Science, v. 256, n. 24, p. 7612–7618, 2010.

VIDAKIS, N.; ANTONIADIS, A.; BILALIS, N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. Journal of Materials Processing Technology, v. 143-144, p. 481–485, 2003.

ZAPPELINO, B.F. et al. Tribological behavior of duplex-coating on Vanadis 10 cold work tool steel. Wear, v. 442-443, p. 203133, fev. 2020.

Published

2021-08-11

How to Cite

Krelling, A. P., Zappelino, B. de F., Jerônimo, J. L., Bonetti, I., Capitani, A. K., de Almeida, E. A. dos S., Giubilei Milan, J. C., & Costa, C. E. da. (2021). Caracterização microestrutural de camadas de boretos sobre aço-ferramenta vanadis 10 / Microstructural characterization of boride layers on vanadis 10 tool steel. Brazilian Journal of Development, 7(8), 79609–79619. https://doi.org/10.34117/bjdv7n8-258

Issue

Section

Original Papers