Distinct stress responses to pyocyanin by planktonic and sessile Staphylococcus aureus UFPEDA 02 and Escherichia coli UFPEDA 224 / Respostas distintas ao estresse causado pela piocianina em células planctônicas e sésseis de Staphylococcus aureus UFPEDA 02 e Escherichia coli UFPEDA 224

Authors

  • Bianca Teixeira Morais de Oliveira Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Kaíque Yago Gervazio de Lima
  • Ray Ravilly Alves Arruda
  • Ulrich Vasconcelos

DOI:

https://doi.org/10.34117/bjdv7n10-227

Keywords:

Biofilm, Negative microbial interactions, Pyocyanin.

Abstract

Antimicrobial activity of pyocyanin against competing organisms of Pseudomonas aeruginosa is related to the oxidative stress that the compound promotes in susceptible cells. The objective of this work was to produce, extract and verify the activity of pyocyanin in planktonic and sessile forms from clinical strains, Staphylococcus aureus UFPEDA 02 and Escherichia coli UFPEDA 224. About 600 µg/mL of pyocyanin were obtained. The planktonic cells were highly sensitive. The MIC determined for S. aureus UFPEDA 02 and E. coli UFPEDA 224 were 18.75 and 37.5 µg/mL, respectively. The pyocyanin demonstrated biocidal effect against S. aureus UFPEDA 02. On the other hand, pyocyanin was not active in either sessile strain. The presence of the pigment allowed a greater adherence of the strains, forming more robust biofilms compared to the control. S. aureus UFPEDA 02 and E. coli UFPEDA 224 presented moderate and high hydrophobicity, respectively. Glass and dolomite surfaces were tested in the in vitro biofilm test. Both strains formed the biofilm better on the dolomite surface, obtaining a cell concentration (MPN/cm2) in the order of 3 log units after 48h of incubation.

References

AGRAWAL, A.H.; CHAUHAN, P.B. Effect of cultivation media components on pyocyanin production and its application in antimicrobial property. Int J Curr Adv Res. v. 54, n. 4, p. 829-833, 2016.

ALMSHAWIT, H.; MACREADIE, I.; FRANDO, D. A simple and inexpensive device for biofilm analysis. J Microbiol Methods. v. 98, n. 1, p. 59-63, 2014.

ANDRADE, J.P.; MACEDO FARIAS, L.; FERREIRA, J.F.; BRUNA-ROMERO, O.; GLÓRIA DE SOUZA, D.; CARVALHO, M.A.; DOS SANTOS, KV. Subinhibitory concentration of piperacillin-tazobactam may be related to virulence properties of filamentous Escherichia coli. Current Microbiology. v. 72, n. 1, p. 19-28, 2016.

APHA; AWWA; WEF. Standard methods for the examination of water and wastewater. Baltimore: APHA, AWWA, WEF, 2012.

ARRUDA, R.R.A.; BONIFÁCIO, T.T.C.; OLIVEIRA, B.T.M.; SILVA, J.E.G.; VASCONCELOS, U. Assessment of indole and pyocyanin in the relationship of Pseudomonas aeruginosa to Escherichia coli activity of two exometabolites. Int J Develop Res. v. 10, n. 3, p. 34122-34128, 2020.

BAHARI, S.; ZEIGHAMI, H.; MIRSHAHABI, H.; ROUDASHTI, S.; HAGHI, F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Global Antimicrob Resist. v. 10, n. 1, p. 21-28, 2017.

BALASUBRAMANIAN, D.; SCHNEPER, L.; MERIGHI, M.; SMITH, R.; NARASIMHAN, G.; LORY, S.; MATHEE, K. The regulatory repertoire of Pseudomonas aeruginosa AmpC ?-lactamase regulator AmpR includes virulence genes. PLoS ONE. v. 7, n. 3, doi:10.1371/journal.pone.0034067, 2012.

BANNING, N.; TOZE, S.; MEE, B.J. Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system. Microbiology. v. 149, n. 1, p. 47-55, 2003.

BARAKAT, R.; GOUBET, I.; MANON, S.; BERGES, T.; ROSENFELD, R. Unsuspected pyocyanin effect in yeast under anaerobiosis. Microbiology Open. v. 3, n. 1, p. 1-4, 2014.

BARON, S.S.; TERRANOVA, G.; ROWE, J.J. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol. v. 18, p. 223–230, 1989.

BOARI, C.A.; ALVES, M.P.; TEBALDI, V.M.R.; SAVIAN, T.V.; PICCOLI, R.H. Formação de biofilme em aço inoxidável por Aeromonas hydrophila e Staphylococcus aureus usando leite e diferentes condições de cultivo. Ciênc Tecnol Alim. v. 29, n. 4, p. 886-895, 2009.

BOS, R.; Van der MEI, H.C.; GOLD, J.; BUSSCHER, H.J. Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol Lett. v. 189, n. 2, p. 311-315, 2000.

BUNT, C.R.; JONES, D.S.; TUCKER, I.G. The effects of pH, ionic strength and polyvalent ions on the cell surface hydrophobicity of Escherichia coli evaluated by the BATH and HIC methods. Int J Pharmac. v. 113, p. 257-261, 1995.

CAVALCANTI, T.G.; SOUZA, A.F.; FERREIRA, G.F.; DIAS, D.S.B.; SEVERINO, L.S.; MORAIS, J.P.S.; SOUSA, K.A.; VASCONCELOS, U. Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste Biomass Valor. v. 10, n. 1, p. 205-214, 2019.

CHANG, C.C.; MERRITT, K. Infection at the site of implanted materials with and without preadhered bacteria. J Orthoped Res. v. 12, n. 4, p. 526-531, 1994.

COLLIN, L.B.; SILVA, J.P.M.; DELGADO, G.B.; VASCONCELLOS, F.A.; FÉLIX, S.R.; DUVAL, E.H. Evaluation of the biofilm formation by strains of Salmonella spp. Isolated from fresh sausage. Braz J Develop. v. 6, n. 8, p. 54428-54435, 2020.

COSTA, J.C.M.; ESPESCHIT, I.D.F.; PIERI, F.A.; BENJAMIN, L.A.; MOREIRA, M.A.S. Increase in biofilm formation by Escherichia coli under conditions that mimic the mastitic mammary gland. Ciênc Rural. v. 44, n. 4, p. 666-671, 2014.

DEVNATH, P.; UDDIN, M.K.; AHMED, F.; HOSSAIN, M.T.; MANCHUR, M.A. Extraction, purification and characterization of pyocyanin produced by Pseudomonas aeruginosa and evaluation for its antimicrobial activity. Int Res J Biol Sci. v. 6, n. 5, p. 1-7, 2017.

ELBARGISY, R.M. Optimization of nutritional and environmental conditions for pyocyanin production by urine of isolates of Pseudomonas aeruginosa. Saudi J Biol Sci. v. 28, p. 993-1000, 2021.

EL-FOULY, M.Z.; SHARAF, A.M.; SAHIM, A.A.M.; EL-BIALY, H.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Rad Res Appl Sci v. 8, n. 1, p. 36-48, 2015.

EL-SHOUNY, W.A.; AL-BAIDANI, A.R.H.; HAMZA, W.T. Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical wound-infections. Int J Pharm Med Sci. v. 1, n. 1, p. 1-7, 2011.

GAHLOUT, M.; CHAUHAN, P.B.; PRAJAPATI, H.; TANDEL, N.; RANA, S.; SOLANKI, D.; PATEL, N. Characterization, application and statistical optimization approach for enhanced production of pyocyanian pigment by Pseudomonas aeruginosa DN9. Syst Microbiol Biomanufact. v. 2021, doi 10.1007/s43393-021-00033-z, 2021.

GHARIEB, M.M.; EL-SHEEKH, M.M.; EL-SABBAGH, S.M.; HAMZA, W.T. Efficacy of pyocyanin produced by Pseudomonas aeruginosa as a topical treatment of infected skin of rabbits. Ind J Biotechnol. v. 75, n. 5, p. 184-193, 2013.

GODSOE, W.; HOLLAND, N.J.; COSNER, C.; KENDALL, B.E.; BRETT, A.; JANKOWSKI, J.; HOLT, R.D. Interspecific interactions and range limits: contrasts among interaction types. Theoretical Ecol. v. 10, p. 167-179, 2017.

GONÇALVES, T.; VASCONCELOS, U. Colour me blue: the history and biotechnological potential of Pseudomonas aeruginosa. Molecules. v. 26, n. 4, p. 927, doi: 10.3390/molecules26040927, 2021.

HADACEK, F.; GREGER, H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochemical Analysis: Int J Plant Chem Biochem Technol. v. 11, n. 3, p. 137-147, 2000.

HASSANI, H.H.; HASAN, H.M.; AL-SAADI, A.; ALI, A.M.; MUHAMMAD, M.H. A comparative study on cytotoxicity and apoptotic activity of pyocyanin produced by wild type and mutant strains of Pseudomonas aeruginosa. Eur J Exp Biol. v. 2, n. 5, p. 1389-1394, 2012.

HIBBING, M.E.; FUQUA, C.; PARSEK, M.R.; PETERSON, S.B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev Microb. v. 8, n. 1, p. 15, 2010.

HOFFMAN, L.R.E.; DEZIEL, E.; D’ARGENIO D.A.; LEPINE, F.; EMERESON, J.; McNAMARA, S.; GIBSON, R.L.; RAMSEY, B.W.; MILLER, S.I. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Nat Acad Sci. v. 103, n. 52, p. 19890-19895, 2006.

HOTTERBEEKX, A.; KUMAR-SINGH, S.; GOOSSENS, H.; MALHOTRA-KUMAR, S. In vivo and In vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. v. 7, p. 106, doi:10.3389/fcimb.2017.00106, 2017.

HUYNH, T.T.; McDOUGLALD, D.; KLEBENSBERGER, J.; AL QARNI, B.; BARRUAUD, N.; RICE, S.A.; SCHLEHECK, D. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One. v. 7, n. 8, p. 1-14, 2012.

KHARE, E.; ARORA, N.K. Dual activity of pyocyanin from Pseudomonas aeruginosa - antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol. v. 57, n. 9, p. 708-713, 2011.

LIN, D.; ZHOU, Q.; XIE, X.; LIU, Y. Potential biochemical and genetic toxicity of triclosan and emerging pollutant on earthworms (Eisenia foetida). Chemosphere. v. 81, n. 10, p. 1328-1333, 2010.

LOPES, S.P.; MACHADO, I.M.; PEREIRA, M.O. Role of planktonic and sessile extracellular metabolic by production Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. J Ind Microbiol Biotechnol. v. 38, n. 10, p. 133-140, 2011.

MARTINS, F.W.P.; CASALI, A.K. In vitro antimicrobial activity of ethanolic extracts of Pomegranate (Punica granatum, L.) on the bacteria Escherichia coli and Staphylococcus aureus. Braz J Develop. v. 5, n. 11, p. 22970-22980, 2019.

MACHAN, Z.A.; PITT, T.L.; WHITE, W.; WATSON, D.; TAYLOR, G.W.; COLE, P.J.; WILSON, R. Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an antistaphylococcal substance. J Med Microbiol. v. 34, n. 4, p. 213-217, 1991.

McWHIRTER, M.J.; McQUILLAN, A.J.; BREMER, P.J. Influence of ionic strength and pH on the first 60 min of Pseudomonas aeruginosa attachment to ZnSe and to TiO2 monitored by ATR-IR spectroscopy. Colloid Surface B: Biointerfaces. v. 84, n. 1, p. 17-25, 2002.

MILLEZI, F.M.; PEREIRA, M.O.; BATISTA, N.N.; CAMARGOS, N.; AUAD, I.; CARDOSO, M.D.G.; PICCOLI, R.H. Susceptibility of monospecies and dual species biofilms of Staphylococcus aureus and Escherichia coli to essential oils. J Food Safety. v. 32, p. 351-359, 2012.

MOLINA-SANTIAGO, C.; UDAONDO, Z.; CORDERO, B.F.; RAMOS, J.L. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli. Environ Microbiol Rep. v. 9, n. 4, p. 441-448, 2017.

MONDS, R.D.; O’TOOLE, G.A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. v. 17, p. 73-87, 2009.

NOTO, M.J.; BURNS, W.J.; BAEVERS, W.N.; SKAAR, E.P. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J Bacteriol. v. 199, n. 17, p. e00221-17. doi: 10.1128/JB.00221-17, 2017.

OLIVEIRA, B.T.M.; BARBOSA, P.S.Z.; CAVALCANTI, T.G.; AMARAL, I.P.G.; VASCONCELOS, U. Craft beer waste as substrate for pyocyanin synthesis. J Pharm Biol Sci. v. 14, n. 1, p. 21-25, 2019.

PAL, R.B.; REVATHI, R. Susceptibility of yeasts to Pseudomonas aeruginosa. Ind J Med Microbiol. v. 16, n. 2, p. 72, 1998.

PAGANO, P.J.; BUCHANAN, L.V.; DAILEY, C.F.; HAAS, J.V.; ENK, R.A.V.; GIBSON, J.K. Effects of linezolid on staphylococcal adherence versus time of treatment. Int J Antimicrob Agent. v. 23, p. 226-234, 2004.

PFFALER, M.A.; MESSER, S.A.; COFFMANN, S. Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole D0870. J Clin Microbiol. v. 33, n. 5, p. 1094-1097.

POORTINGA, A.T.; BOS, R.; BUSSCHER, H. Reversibility of bacterial adhesion at an electrode surface. Langmuir. v. 17, n. 9, p. 2851–2856, 2001.

RODRIGUES, L.B.; SANTOS, L.R.; TAGLIARI, V.Z.; RIZZO, N.N.; TRENHAGO, G.; OLIVEIRA, A.P.; GOETZ, F.; NASCIMENTO, V.P. Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Braz J Microbiol. v. 41, p. 1082-1085, 2010.

SARTORATTO, A.; MACHADO, A.L.M.; DELARMELINA, C.; FIGUEIRA, G.M.; DUARTE, M.C.T.; REHDER, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. v. 35, n. 4, p. 275-280, 2004.

SATPATHY, S.; SEN, S.K.; PATTANAIK, S.; RAUT, S. Review on bacterial biofilm: An universal cause of contamination. Biocatalysis Agric Biotechnol. v. 7, p. 56-66, 2016.

SCHEUERMAN, T.R.; CAMPER, A.K.; HAMILTON, M.A. Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci. v. 208, n. 1, p. 23-33, 1998.

SCHIERHOLZ, J.M.; BEUTH, J.; PULVERER, G. Evidence for a self-fulfilling hypothesis: chlorhexidine dressing for reduction of microbial colonization of the skin with central venous catheters. J Hosp Infect. v. 44, p. 241-242, 2000.

SCOTT-THOMAS, A.; SYHRE, M.; PATTEMOREL, P.K.; EPTON, M.; LAING, R.; PEARSON, J.; CHAMBERS, S.T. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. v. 10, n. 1, p. 1-10, 2010.

TAMAGNINI, L.M.; GONZALES, R.D. Bacteriological stability and growth kinetics of Pseudomonas aeruginosa in bottled water. J Appl Microbiol. v. 83, n. 1, p. 91-94, 1997.

TYFA, A.; KUNICKA-STYCZY?SKA, A.; ZABIELSKA, J. Evaluation of hydrophobicity and quantitative analysis of biofilm formation by Alicyclobacillus sp. Acta Biochimica Polonica. v. 62, n. 4, p. 785-790, 2015.

VASCONCELOS, U.; LIMA, M.A.G.A.; CALAZANS, G.M.T. Pseudomonas aeruginosa associated with negative interactions on coliform bacteria growth. Can J Pure Appl Sci. v. 4, n. 2, p. 1133-1139, 2010.

VIANA, A.A.G.; MARTINS, R.X.; FERREIRA, G.F.; ZENAIDE-NETO, H.; AMARAL, I.P.G.; VASCONCELOS, U. Pseudomonas aeruginosa and pyocyanin negatively act on the establishment of Enterobacteriaceae biofilm on a ceramic surface. Int J Eng Res Appl. v. 7, n. 8, p. 23-30, 2017.

VIANA, A.; OLIVEIRA, B.; CAVALCANTI, T.G.; SOUZA, K.; MENDONÇA, E.; AMARAL, I.P.G.; VASCONCELOS, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa. Int J Adv Eng Res Sci. v. 5, n. 7, p. 212-223, 2018.

VOGGU, L.; SCHLAG, S.; BISWAS, R.; ROSENSTEIN, R.; RAUSCH, C.; GÖTZ, F. Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol. v. 188, n. 23, p. 8079-8086, 2006.

WHOOLEY, M.A.; McLOUGHLIN, A.J. The regulation of pyocyanin production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol. v. 15, n. 1, p. 161-166, 1982.

ZHANG, X-S.; GARCÍA-CONTRERAS, R.; WOOD, T.K. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. v. 189, n. 8 p. 3051–3062, 2007.

Downloads

Published

2021-10-18

How to Cite

de Oliveira, B. T. M., de Lima, K. Y. G., Arruda, R. R. A., & Vasconcelos, U. (2021). Distinct stress responses to pyocyanin by planktonic and sessile Staphylococcus aureus UFPEDA 02 and Escherichia coli UFPEDA 224 / Respostas distintas ao estresse causado pela piocianina em células planctônicas e sésseis de Staphylococcus aureus UFPEDA 02 e Escherichia coli UFPEDA 224. Brazilian Journal of Development, 7(10), 98074–98088. https://doi.org/10.34117/bjdv7n10-227

Issue

Section

Original Papers