Food restriction protects the myenteric nervous population of rats with type 2 diabetes mellitus / A restrição alimentar protege a população nervosa mioentérica de ratos com diabetes mellitus tipo 2

Authors

  • Carlos Vinicius Dalto da Rosa
  • Jessica Men de Campos
  • Gabriela Scomparin Goularte
  • Vilma Aparecida Ferreira de Godoi
  • Maria Raquel Marçal Natali

DOI:

https://doi.org/10.34117/bjdv8n4-111

Keywords:

dietary restriction, streptozotocin, enteric neurons, enteric glia, small intestine.

Abstract

Background: Type 2 diabetes affects the intestine. Food restriction (FR) promotes benefits, but the studies of its effects in rats are scarce. This study aims to analyze the influence of two type 2 diabetes models and FR over the intestine morphology. Methods: Thirty Wistar rats formed three groups (n=10/group) treated for two months: C (control); DE (diabetic with streptozotocin+cafeteria-style diet); and DN (diabetic with streptozotocin+nicotinamide). These groups were subdivided into six during two months: CC (control), CCR (control+food restriction), DEC (diabetic+standard diet), DER (diabetic+food restriction), DNC (diabetic+standard diet) and DNR (diabetic+food restriction). FR was 50% of the average daily dietary intake of group C. Jejunum and ileum samples were collected for evaluation of wall morphometry, goblet cell number, number and profile of myenteric neurons and glia. Results: The DE model promoted wall reduction in both segments, while DN jejunum was increased. Goblet cells were reduced in the jejunum for both diabetic models and FR. Both intestinal segments presented reduction of neuronal and glial myenteric populations in diabetes. Conclusions: FR promoted protection of myenteric neurons and glial cells against diabetic damage. The jejunum and ileum respond differently to diabetes and FR. FR has positive effects over the small intestine, mainly over the enteric nervous system.

References

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

Kanda Y, Hashiramoto M, Shimoda M, Hamamoto S, Tawaramoto K, Kimura T, et al. Dietary restriction preserves the mass and function of pancreatic β cells via cell kinetic regulation and suppression of oxidative/ER stress in diabetic mice. J Nutr Biochem. 2015;26:219–26.

Islam MS, Wilson RD. Experimentally induced rodent models of type 2 diabetes. Methods Mol Biol. 2012;933:161–74.

Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37:1163–7.

Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metab Clin Exp. 2000;49:1390–4.

Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25:612–28.

Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23:131–8, e26.

Tormo MA, Martínez IM, Romero de Tejada A, Gil-Exojo I, Campillo JE. Morphological and enzymatic changes of the small intestine in an n0-STZ diabetes rat model. Exp Clin Endocrinol Diabetes. 2002;110:119–23.

Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98:378–84.

Furness JB. The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci. 2006;130:1–5.

Chandrasekharan B, Srinivasan S. Diabetes and the enteric nervous system. Neurogastroenterol Motil. 2007;19:951–60.

Stenkamp-Strahm CM, Kappmeyer AJ, Schmalz JT, Gericke M, Balemba O. High-fat diet ingestion correlates with neuropathy in the duodenum myenteric plexus of obese mice with symptoms of type 2 diabetes. Cell Tissue Res. 2013;354:381–94.

Spångéus A, El-Salhy M. Myenteric plexus of obese diabetic mice (an animal model of human type 2 diabetes). Histol Histopathol. 2001;16:159–65.

Glisić R, Koko V, Todorović V, Drndarević N, Cvijić G. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats. Regul Pept. 2006;136:30–9.

Adachi T, Mori C, Sakurai K, Shihara N, Tsuda K, Yasuda K. Morphological changes and increased sucrase and isomaltase activity in small intestines of insulin-deficient and type 2 diabetic rats. Endocr J. 2003;50:271–9.

Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54:2506–14.

Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, et al. Very-low-calorie diet: a quick therapeutic tool to improve β cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr. 2012;95:609–13.

Deng X, Cheng J, Zhang Y, Li N, Chen L. Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats. Acta Diabetol. 2010;47 Suppl 1:177–85.

Steinbrook R. Surgery for severe obesity. N Engl J Med. 2004;350:1075–9.

Rosa CVD da, Campos JM de, Sá Nakanishi AB de, Comar JF, Martins IP, Mathias PC de F, et al. Food restriction promotes damage reduction in rat models of type 2 diabetes mellitus. PLoS ONE. 2018;13:e0199479.

Sahin I, Aydin S, Ozkan Y, Dagli AF, Akin KO, Guzel SP, et al. Diet-induced obesity suppresses ghrelin in rat gastrointestinal tract and serum. Mol Cell Biochem. 2011;355:299–308.

Trammell SAJ, Weidemann BJ, Chadda A, Yorek MS, Holmes A, Coppey LJ, et al. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice. Sci Rep. 2016;6:26933.

Sharma AK, Sharma A, Kumari R, Kishore K, Sharma D, Srinivasan BP, et al. Sitagliptin, sitagliptin and metformin, or sitagliptin and amitriptyline attenuate streptozotocin-nicotinamide induced diabetic neuropathy in rats. J Biomed Res. 2012;26:200–10.

Su H-C, Hung L-M, Chen J-K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2006;290:E1339-1346.

da Rosa CVD, Azevedo SCSF, Bazotte RB, Peralta RM, Buttow NC, Pedrosa MMD, et al. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats. PLoS ONE. 2015;10:e0143005.

Verdam FJ, Greve JWM, Roosta S, van Eijk H, Bouvy N, Buurman WA, et al. Small intestinal alterations in severely obese hyperglycemic subjects. J Clin Endocrinol Metab. 2011;96:E379-383.

Zhong H-J, Yuan Y, Xie W-R, Chen M-H, He X-X. Type 2 Diabetes Mellitus Is Associated with More Serious Small Intestinal Mucosal Injuries. PLoS ONE. 2016;11:e0162354.

Woods M, Lan Z, Li J, Wheeler MB, Wang H, Wang R. Antidiabetic effects of duodenojejunal bypass in an experimental model of diabetes induced by a high-fat diet. Br J Surg. 2011;98:686–96.

Stenkamp-Strahm CM, Nyavor YEA, Kappmeyer AJ, Horton S, Gericke M, Balemba OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res. 2015;361:411–26.

Sha H, Zhao J-B, Zhang Z-Y, Zhou S-P, Tong X-L, Zhuang F-Y, et al. Effect of Kaiyu Qingwei Jianji on the morphometry and residual strain distribution of small intestine in experimental diabetic rats. World J Gastroenterol. 2006;12:7149–54.

Liu G-F, Zhao J-B, Zhen Z, Sha H, Chen P-M, Li M, et al. Effect of tangweian jianji on upper gastrointestinal remodeling in streptozotocin-induced diabetic rats. World J Gastroenterol. 2012;18:4875–84.

Zhao J, Frøkjaer JB, Drewes AM, Ejskjaer N. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus. World J Gastroenterol. 2006;12:2846–57.

See NA, Epstein ML, Dahl JL, Bass P. The myenteric plexus regulates cell growth in rat jejunum. J Auton Nerv Syst. 1990;31:219–29.

Hadzijahic N, Renehan WE, Ma CK, Zhang X, Fogel R. Myenteric plexus destruction alters morphology of rat intestine. Gastroenterology. 1993;105:1017–28.

Scoaris CR, Rizo GV, Roldi LP, de Moraes SMF, de Proença ARG, Peralta RM, et al. Effects of cafeteria diet on the jejunum in sedentary and physically trained rats. Nutrition. 2010;26:312–20.

Mao J, Hu X, Xiao Y, Yang C, Ding Y, Hou N, et al. Overnutrition stimulates intestinal epithelium proliferation through β-catenin signaling in obese mice. Diabetes. 2013;62:3736–46.

Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res. 2015;64:537–46.

Lips MA, de Groot GH, van Klinken JB, Aarts E, Berends FJ, Janssen IM, et al. Calorie restriction is a major determinant of the short-term metabolic effects of gastric bypass surgery in obese type 2 diabetic patients. Clin Endocrinol (Oxf). 2014;80:834–42.

Ugochukwu NH, Bagayoko ND, Antwi ME. The effects of dietary caloric restriction on antioxidant status and lipid peroxidation in mild and severe streptozotocin-induced diabetic rats. Clin Chim Acta. 2004;348:121–9.

Minamiyama Y, Bito Y, Takemura S, Takahashi Y, Kodai S, Mizuguchi S, et al. Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in type II diabetic rats. J Pharmacol Exp Ther. 2007;320:535–43.

Goodlad RA, Lenton W, Ghatei MA, Adrian TE, Bloom SR, Wright NA. Proliferative effects of “fibre” on the intestinal epithelium: relationship to gastrin, enteroglucagon and PYY. Gut. 1987;28 Suppl:221–6.

Ueno PM, Oriá RB, Maier EA, Guedes M, de Azevedo OG, Wu D, et al. Alanyl-glutamine promotes intestinal epithelial cell homeostasis in vitro and in a murine model of weanling undernutrition. Am J Physiol Gastrointest Liver Physiol. 2011;301:G612-622.

de Oliveira Belém M, Cirilo CP, de Santi-Rampazzo AP, Schoffen JPF, Comar JF, Natali MRM, et al. Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats. Exp Gerontol. 2015;69:85–93.

Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73:1131S-1141S.

Navarrete J, Vásquez B, Del Sol M. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet. Int J Clin Exp Pathol. 2015;8:14649–57.

Lee J-C, Lee H-Y, Kim TK, Kim M-S, Park YM, Kim J, et al. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS ONE. 2017;12:e0187515.

Schoffen JPF, Vicentini FA, Marcelino CG, Araújo EJA, Pedrosa MMD, Natali MRM. Food restriction beginning at lactation interferes with the cellular dynamics of the mucosa and colonic myenteric innervation in adult rats. An Acad Bras Cienc. 2014;86:1833–48.

Nezami BG, Mwangi SM, Lee JE, Jeppsson S, Anitha M, Yarandi SS, et al. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology. 2014;146:473-483.e3.

Rivera LR, Leung C, Pustovit RV, Hunne BL, Andrikopoulos S, Herath C, et al. Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet. Neurogastroenterol Motil. 2014;26:1188–99.

Ozturk NA, Gokturk HS, Demir M, Erdogan D, Unler GK, Gur G, et al. The effect of autonomous neuropathy on bowel preparation in type 2 diabetes mellitus. Int J Colorectal Dis. 2009;24:1407–12.

Luo P, Liu D, Li C, He W-X, Zhang C-L, Chang M-J. Enteric glial cell activation protects enteric neurons from damage due to diabetes in part via the promotion of neurotrophic factor release. Neurogastroenterol Motil. 2018;e13368.

Liu W, Yue W, Wu R. Effects of diabetes on expression of glial fibrillary acidic protein and neurotrophins in rat colon. Auton Neurosci. 2010;154:79–83.

Pereira RVF, Tronchini EA, Tashima CM, Alves EPB, Lima MM, Zanoni JN. L-glutamine supplementation prevents myenteric neuron loss and has gliatrophic effects in the ileum of diabetic rats. Dig Dis Sci. 2011;56:3507–16.

Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci. 2013;177:199–210.

Mattson MP, Duan W, Guo Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem. 2003;84:417–31.

Published

2022-04-06

How to Cite

da Rosa, C. V. D., de Campos, J. M., Goularte, G. S., de Godoi, V. A. F., & Natali, M. R. M. (2022). Food restriction protects the myenteric nervous population of rats with type 2 diabetes mellitus / A restrição alimentar protege a população nervosa mioentérica de ratos com diabetes mellitus tipo 2. Brazilian Journal of Development, 8(4), 24391–24410. https://doi.org/10.34117/bjdv8n4-111

Issue

Section

Original Papers