In vitro development of green manures: phytotoxicity and remediation of 2,4-D / Desenvolvimento in vitro de adubos verdes: fitotoxicidade e remediação de 2,4-D

Authors

  • Dora dos Santos Costa Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Carla Caroline Amaral da Silva
  • Ida Carolina Neves Direito
  • Cristiane Pimentel Victório

DOI:

https://doi.org/10.34117/bjdv8n5-507

Keywords:

herbicide, bioremediation, pesticide, plant tissue culture, 2, 4-D, green manures, phytoxicity, remediation

Abstract

Evaluation of phytoremediation capacity under aseptic, controlled conditions can be achieved with the use of plant tissue cultures as a model, eliminating interference from the physical environment. Herein, we developed an in vitro culture protocol for green manures of Crotalaria juncea, C. spectabilis and Canavalia ensiformis, each of which contributes to a sustainable cropping system. In particular, we studied their behavior in the presence of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Disinfection of C. juncea seeds was efficient, and plantlets presented the best development of roots, stem and leaves. Thus, subsequent experiments were conducted only with C. juncea. For 2,4-D tolerance tests, C. juncea seedlings were transferred to Murashige and Skoog (MS) solid media under the following concentrations of 2,4-D: 0 (control), 0.2, 0.5 and 1.0 mg L-1 for a 30-day period. After this period, MS culture media for C. juncea was analyzed by HPLC for quantification of residual 2,4-D. C. juncea development was observed to be sensitive to 2,4-D toxicity; however it was observed 2,4-D reduction in the media. Nonetheless, field assays are still necessary to evaluate the feasibility of using it as a phytoremediator, as well as determine the influence of environmental and plant density variables on 2,4-D absorption capacity from soil.

References

ANÉSIO AHC, SANTOS MV, SILVEIRA RR, FERREIRA EA, SANTOS JB, SILVA LD. 2018. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops. Acad Bras Cienc, 90: 1717-1732. DOI: 0001-3765201820170134

ANGELINI VA, OREJAS J, MEDINA MI, AGOSTINI E. 2011. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J Hazard Mater 185: 269–274. DOI: 10.1016/j.jhazmat.2010.09.028

AMBROSANO EJ, WUTKE EB, SALGADO GC, ROSSI F, DIAS FLF, TAVARES S, OTSUK IP. 2016. Caracterização de cultivares de Mucuna quanto a produtividade de fitomassa, extração de nutrientes e seus efeitos nos atributos do solo. Cadernos de Agroecologia, 11: 1-10

BAUMGARTNER D, SOUZA EG, COELHO SEM, MAGGI MF. 2017. Correlation between 2,4-D herbicide residues and soil attributes in southern of Brazil. Rev Cienc Agron 48: 428-437. DOI: 10.5935/1806-6690.20170050

BELO AF, PIRES FR, BONOMO R, CARGNELUTTI FILHO A, TENIS LHO. 2016. Sulfentrazone phytoremediation under field conditions. Rev Caatinga 29: 119-126. DOI: 10.1590/1983-21252016v29n114rc

BIDABADI SS, JAIN SM. 2020. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants (Basel) 9: 702. DOI: 10.3390/plants9060702

CHEN X, ZHANG H, WAN Y, CHEN X, LI Y. 2018. Determination of 2,4-Dichlorophenoxyacetic acid (2,4-D) in rat serum for pharmacokinetic studies with a simple HPLC method. PLoS One, 13: 1-10. DOI: 10.1371/journal.pone.0191149

CONCENÇO G, SILVA CJ. 2015. Dessecação de espécies de crotalária visando à implantação de canaviais em sucessão, Dourados, Embrapa Agropecuaria Oeste. 9p (Comunicado Técnico, 210)

CONGER BV. 2018. Cloning agricultural plants via in vitro techniques. 1o ed. Boca Raton, CRS Press.

COSTA DS, DIREITO ICN, VICTÓRIO CP. 2019. Medicinal and ornamental plant tissue culture in Brazil and worldwide: researches and patents. Plant Cell Cult Micropropag 15: 8-2. DOI: 10.46526/pccm.2019.v15i1.137

COSTA DS, SILVA CCA, SILVA AJR, ALBARELLO N, DIREITO ICN, VICTÓRIO CP. 2020. Residual 2,4-D in plant tissue culture discarded media: a neglected source of environmental pollution. Braz J Dev 6: 30046-30059. DOI: 10.34117/bjdv6n5-457

DANG X, CHEN B, LIU F, REN H, LIU X, ZHOU J, QIN Y, LIN D. 2020. Auxin signaling-mediated apoplastic pH modification functions in petal conical cell shaping. Cell Rep 30: 3904-3916. DOI: 10.1016/j.celrep.2020.02.087

DELMAIL D, LABROUSSE P, HOURDIN P, LARCHER L, MOESCH C, BOTINEA M. 2013. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte. Int J Phytoremediation 15: 647-662. DOI: 10.1080/15226514.2012.723068

DMA® 806 BR Dow Agrosciences. 2022. Bula DMA 806 BR. Avaiable in: <https://www.agrolink.com.br/agrolinkfito/produto/dma-806-br_222.html> Acess in: Mar, 25th. 2022

DONATTI RN, GOMES TM, MENEGASSI LC, TOMMASO G, ROSSI F. 2017. Sodium phytoremediation by green manure growing in soil irrigated with wastewater of dairy industry. Eng Agrícola 37: 665-675. DOI: 10.1590/1809-4430-Eng.Agric.v37n4p665-675/2017

DORAN PM. 2009. Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103: 60-76. DOI: 10.1002/bit.22280

ESPÍNDOLA JAA, GUERRA JGM, DE-POLLI H, ALMEIDA DL, ABBOUD ACS. 2005. Adubação verde com leguminosas. Coleção Saber. 1st ed. Brasília, Embrapa Informação Tecnológica.

FERRAÇO M, PIRES FR, BELO AF, CELIN FILHO A, BONOMO R. 2017. Effect of population density of Canavalia ensiformis on the phytoremediation of soil contaminated with sulfentrazone. Rev Ciênc Agron, 48: 32-40. DOI: 10.5935/1806-6690.20170004

FERRAÇO M, BELO AF, PIRES FR, BONOMO R, FILHO AC. 2019. Phytoremediation of contaminated soil with sulfentrazone by different density of Crotalaria juncea. Planta daninha 37: e019185323. DOI: https: 10.1590/S0100-83582019370100008

FOUCAULT Y, LÉVÊQUE T, XIONG T, SCHRECK E, AUSTRUY A, SHAHID M, DUMAT C. 2013. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere, 93: 1430-1435. DOI: 10.1016/j.chemosphere.2013.07.040

FU C-X, ZHAO D-X, HUANG Y, MA F-S. 2005. Cellular aggregate size as the critical factor for flavonoid production by suspension cultures of Saussurea medusa. Biotechnol Lett 27: 91-95. DOI: 10.1007/s10529-004-6934-1

FUMAGALLI P, COMOLLI R, FERRÈ C, GHIANI A, GENTILI R, CITTERIO S. 2014. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: A strategy to increase the benefits of soil phytoremediation. J Environ Manage 145: 35-42. DOI: 10.1016/j.jenvman.2014.06.001

GROSSMANN K. 2009. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag Sci 66: 113-120. DOI: 10.1002/ps.1860

JOTE CA. 2019. A Review of 2,4-D Environmental fate, persistence and toxicity effects on living organisms. OMCIJ 9: 555755. DOI: 10.19080/OMCIJ.2019.09.555755

KOŹMIŃSKA A, WISZNIEWSKA A, HANUS-FAJERSKA E, MUSZYŃSKA E. 2018. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12: 1-14. DOI: 10.1007/s11816-017-0467-2

LAMICHHANE JR, DÜRR C, SCHWANCK AA, ROBIN M-H, SARTHOU J-P, CELLIER V, MESSÉAN A, AUBERTOT J-N. 2017. Integrated management of damping-off diseases. a review. Agron Sustain Dev, 37. DOI: 10.1007/s13593-017-0417-y

MADALÃO JC, SOUZA MF, SILVA AA, SILVA DV, JAKELAITIS A, PEREIRA GAM. 2017. Action of Canavalia ensiformis in remediation of contaminated soil with sulfentrazone. Bragantia, 76: 292-299. DOI: 10.1590/1678-4499.526

MADARIAGA-NAVARRETE A, RODRÍGUEZ-PASTRANA BR, VILLAGÓMEZ-IBARRA JR, ACEVEDO-SANDOVAL AO, PERRY G, ISLAS-PELCASTRE M. 2017. Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. J Environ Sci Health B 52: 367–375. DOI: 10.1080/03601234.2017.1292092

MARCATO ACC, SOUZA CP, FONTANETTI CS. 2017. Herbicide 2,4-D: A Review of Toxicity on Non-Target Organisms. Wat Air Soil Poll 228. DOI: 10.1007/s11270-017-3301-0

MEFTAUL MD, VENKATESWARLU K, DHARMARAJAN R, ANNAMALAI P, MEGHARAJ M. 2020. Movement and fate of 2,4‑D in Urban Soils: A Potential Environmental Health Concern. ACS Omega, 5: 13287−13295. DOI: 10.1021/acsomega.0c01330

MURASHIGE T, SKOOG F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 15: 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

NGUYEN TTK, NGUYEN TN, ANQUETIN G, RISBERG S, NOËL V, MATTANA G, TOUZEAU J, BARBAULT F, PHAM MC, PIRO B. 2018. Triggering the electrolyte-gated organic field-effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2,4-dichlorophenoxyacetic acid. Biosens Bioelectron 113: 32-38. DOI: 10.1016/j.bios.2018.04.051

OLIVEIRA MA, PIRES FR, FERRAÇO M, BELO AF. 2014. The validation of an analytical method for sulfentrazone residue determination in soil using liquid chromatography and a comparison of chromatographic sensitivity to millet as a bioindicator species. Molecules, 19: 10982-10997. DOI: 10.3390/molecules190810982

RAO JP, AGRAWAL P, MAHMOOD R, SREEVATHSA R, RAO KS., REDDY GR, SURYANARAYANA VVS. 2011. Tissue culture independent transformation of the forage crop sunn hemp (Crotalaria juncea L.): an easy method towards generation of transgenics. Physiol Mol Biol Plants 18: 51–57. DOI: 10.1007/s12298-011-0095-1

ROCHA FS, CAMPOS VP. 2004. Effect of exudates of plant cell culture on second-stage juveniles of Meloidogyne incognita. Fitopatol Bras 29: 294-299. DOI: 10.1590/S0100-41582004000300009

SCHULTZE-KRAFT R, RAO IM, PETERS M, CLEMENTS RJ, BAI C, LIU G. 2018. Tropical forage legumes for environmental benefits: an overview. Trop Grassl-Forrajes Trop 6: 1-14. DOI: 10.17138/TGFT(6)1-14

SHAW LJ, BURNS RG. 2004. Enhanced Mineralization of [U-14C] 2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 70: 4766–4774. DOI: 10.1128/AEM.70.8.4766-4774.2004

SILVA DRO, SILVA EDN, AGUIAR ACM, NOVELLO BDP, SILVA AAA, BASSO CJ. 2018.. Drift of 2,4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciênc Rural, 48e20180179. DOI: 10.1590/0103-8478cr20180179

SILVA CCA, COSTA DS, DIREITO ICN, VICTÓRIO CP. 2019. Germination and seedling development of the green fertilizer Canavalia ensiformis (L.) DC. (Fabaceae) under different 2,4-D concentrations. In: André L. O. de Francisco (Ed) Botânica aplicada 2. Ponta Grossa, Atena Editora. p. 41-52.

SILVEIRA E. 2021. Como um agrotóxico usado na Guerra do Vietnã está destruindo videiras na Campanha Gaúcha. Avaiable in: <https://www.bbc.com/portuguese/brasil-55712264> Acess in: Jan, 30 th. 2021.

SILVEIRA FS. OVERBECK GE. 2013. Effect of high temperature on germination of four legumes from a forest-grassland mosaic in Southern Brazil. Biota Neotrop 13: 331-335. DOI: 10.1590/S1676-06032013000200035

SINGH T, SINGH DK. 2017. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. Int J Phytoremediation 19: 834-843. DOI: 10.1080/15226514.2017.1290579

SONG Y. 2014. Insight into the mode of action of 2,4- dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56: 106-113. DOI: 10.1111/jipb.12131

TALANO MA, FRONTERA S, GONZÁLEZ P, MEDINA MI, AGOSTINI E. 2010. Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176: 784–791. DOI: 10.1016/j.jhazmat.2009.11.103

TARLA DN, ERICKSON LE, HETTIARACHCHI GM, AMADI SI, GALKADUWA M, DAVIS LC, NURZHANOVA A, PIDLISNYUK V. 2020. Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci 10: 1217. DOI: 10.3390/app10041217

TIMOSSI PC, WISINTAINER C, DOS SANTOS BJ, PEREIRA VA, PORTO VS. 2011. Supressão de plantas daninhas e produção de sementes de crotalária em função de métodos de semeadura. Pesqui Agropecu Trop 41: 525-530. DOI: 10.5216/pat.v41i4.11603

TRIGIANO RN, GRA DI. 1999. Plant Tissue culture concepts and laboratory exercises. Boca Raton, CRC Press.

VAN STADEN J, FENNELL CW, TAYLOR NJ. 2006. Plant stress in vitro: the role of phytohormones. Acta Hortic 725: 55-62. DOI: 10.17660/ActaHortic.2006.725.2

WANG CY, ZHOU JW, JIANG K, LIU J. 2017. Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. S Afr J Bot 111: 17–22. DOI: 10.1016/j.sajb.2017.03.019

YAN A, WANG Y, TAN SN, YUSOF MLM, GHOSH S, CHEN Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11: 359. DOI: 10.3389/fpls.2020.00359

Downloads

Published

2022-05-25

How to Cite

Costa, D. dos S., da Silva, C. C. A., Direito, I. C. N., & Victório, C. P. (2022). In vitro development of green manures: phytotoxicity and remediation of 2,4-D / Desenvolvimento in vitro de adubos verdes: fitotoxicidade e remediação de 2,4-D. Brazilian Journal of Development, 8(5), 40551–40568. https://doi.org/10.34117/bjdv8n5-507

Issue

Section

Original Papers