Usando o planejamento de experimentos para a predição da temperatura de usinagem através da técnica do termopar acoplado à ferramenta de corte / Using design of experiments for machining temperature prediction by thermocouple inserted in the cutting tool technique

Authors

  • Johnnatan Pessoa Carpanez David
  • Carlos Renato Pagotto
  • Raphael Fortes Marcomini

DOI:

https://doi.org/10.34117/bjdv8n6-390

Keywords:

torneamento, termopar, temperatura, rugosidade média, DOE.

Abstract

O presente trabalho visou testar a aplicabilidade da metodologia de medição da temperatura de corte do aço ABNT 1045 utilizando-se ferramenta de corte de carbeto metálico revestida com TiN em contato com termopar do tipo K conectado a um circuito de leitura composto de um Arduíno Uno e um computador. Foram testados dez avanços para três grupos de velocidade de corte: 220 m/min, 110 m/min e 55 m/min e os resultados mostram-se promissores corroborando com a previsão realizada pela teoria clássica de usinagem. Além disso, foi usada a ferramenta Planejamento de Experimentos (DOE) para verificar a convergência do modelo prático, otimizando o processo produtivo com a geração de menos calor possível aumentando, desta forma.  a vida da ferramenta (que são caras), controlando o uso de fluido de corte (nocivo ao ambiente), além de obter uma qualidade superficial superior da peça usinada.

References

ABBAS, A.T.; RAGAB, A.E.; AL BAHKALI, E.A.; El DANAF, E.A. Optimizing cutting conditions for minimum roughness in face milling of high strength, Advances in Materials Science and Engineering, v. 2016, p. 01-14, April 2016.

ABUKHSHIM, N.A.; MATIVENGA, P.T.; SHEIKH, M.A. Heat generation and temperature prediction in metal cutting: a review and implications for highspeed machining. International Journal of Machine Tools and Manufacture, v. 46, n.7, p. 782-800, 2006.

ARCELOR MITTAL, Guia do aço. Disponível http://brasil.arcelormittal.com.br/pdf. Acessado em 03/06/2019.

ASILTURK, I.; AKKUS, H. Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement, v. 44, n.9, p. 1697-1704, Nov, 2011.

ASILTURK, I.; ÇUNKAS, M. Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Systems with Applications, Vol. 38, n. 5, p. 5826-5832, 2011.

AKHIL, C.S.; ANANTHAVISHNU, M.H.; AKHIL, C.K. et al. Measurement of cutting temperature during machining. IOSR Journal of Mechanical and Civil Engineering, v.13, n.2, p. 102-116, 2016.

ANÔNIMO (2002), ABNT NBR ISSO 4287: Especificação geométrica do produto (GPS) – rugosidade- método do perfil- termos-definições e parâmetros de rugosidade. Rio de Janeiro, ABNT - Associação Brasileira de Normas Técnicas.

ASTAKHOV, V.; SHVETS, S. The assessment of plastic deformation in metal cutting. Journal of Materials Processing Technology, v.146, n. 2, p. 193-202, 2004.

AZMI, H.; CHE HARON, C.H.; ZAILANI, C.A.; HAMIDON, R. et al. Study the effect of cutting parameter in machining kenaf fiber reinforced plastic composite materials using DOE. In: Bahari M.S., Harun A., Zainal Abidin Z., Hamidon R., Zakaria S. (eds), Intelligent Manufacturing and Mechatronics. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2021.

BERZEGAR, Z.; OZLU, E. Analytical prediction of cutting tool temperature distribution in orthogonal cutting including third deformation zone. Journal of Manufacturing Processes, v.67, p. 325-344, 2021.

BRANDÃO, L.C.; COELHO, R.T.; RODRIGUES, A. Experimental and theoretical study of workpiece temperature when end milling hardened steels using (TiAl)N-coated and PCBN-tipped tools. Journal of Materials Processing Technology, v.199, n.1, p. 234-244, 2008.

DE SOUZA, A.; CÂMARA, M.A.; Tensões residuais induzidas pela operação de fresamento do aço ABNT 4340 sob variação da velocidade de corte, ângulo de posição e tratamento térmico. Matéria (Rio de Janeiro), v.25, n.2, 2020.

FAHAD, M.; MATIVENGA, P.; SHEIKH, M. On the contribution of primary deformation zone-generate chip temperature to heat partition in machining. International Journal of Advanced Manufacturing Technology, v. 68, n. 1-4, p. 99-110, 2013.

FERRARESI, D. Fundamentos da usinagem dos metais. 1 ed, São Paulo, Edgard Blücher, 1970.

GARCÍA-MARTÍNEZ, E.; MARTINEZ-MARTINEZ, A. et al. Proposal of a combined experimental-simulation methodology for the evaluation of machining temperature in turning processes. Measurement, v. 189, Feb., 2022.

GRZESIK, W. Experimental investigation of the cutting temperature when turning with coated indexable inserts. Journal of Machining Tools and Manufacturing, v.39, p. 355-369, 1999.

GRZESIK, W, VAN LUTTERVELT, C.A. A investigation of thermal effects in orthogonal cutting associated with multilayer coatings. CIRP Annals, v.50, n.2, p. 53-56, 2001.

GUPTA, M.K.; KORKMAZ, M.E.; SANKAIA, M. Cutting forces and temperature measurements in cryogenic assisted turning of AA-2024-T351 alloy: an experimentally validated simulation approach. Measurement, v. 188, 2022

GUPTA, M.K.; MIA, M.; PRUNCU, C.I., et al. Parametric optimization and process capability analysis for machining of nickel-based superalloy. The International Journal of Advanced Manufacturing Technology, v.102, p.3995-4009, March, 2019.

HESSAINIA, Z.H.; BELBAH, A.; YALLESE, M.A. et al. On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, v.46, n.5, p. 1671-1681, June, 2013.

KOMANDURI, H; HOU, Z.B. Thermal modeling of the metal cutting processes part I – temperature rise distribution due to shear plane heat source. International Journal of Mechanical Sciences, v.42, p. 1715-1752, 2000.

KUMAR, H.D.; ILANGOVAN, S.; HADHIKA, N. Optimization of cutting parameters for MRR, tool wear and surface roughness characteristics in machining ADC12 piston alloy using DOE. Tribology in Industry, v.42, n.1, p. 32-40, March, 2020.

KUMAR, R. I.; CHAUHAN, S. Study on surface roughness measurement for turning of Al7075/10/SiCp and Al7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement, Vol. 65, p. 166-180, 2015.

LIMA FILHO, A.F.; PASCHOALINOTO, N.W.; GILLES FERRER, J.A. et al. Aplicação de um planejamento fatorial para a predição de acabamento superficial do processo de fresamento da liga Ti-6Al-4V. Brazilian Journal of Development, v.7, n.2, p. 20294-20310, feb, 2021.

LOEWEN, E.G.; SHAW, M.C. On the analysis of cutting tool temperatures. Transactions of ASME, v.76, p. 217-231, 1954.

LONGBOTTOM, J.; LANHAM, J. Cutting temperature measurement while machining – a review. Aircraft Engineering and Aerospace Technology, v.77, n.2, p. 122-130, 2005.

MACHADO, A.R.; ABRÃO, A.M.; COELHO, R.T.; DA SILVA, M.B. Teoria da Usinagem dos Materiais, 3 ed., São Paulo, Edgard Blücher, 2015.

MING, W.; SHEN, F.; ZANGH, G.; LIU, G. et al. Green machining: a framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11. Journal of Cleaner Production, v.285, 2021.

MONTGOMERY, D.C. Design and analysis of experiments, 6ª ed., New Jersey, John Wiley & Sons, 2013.

MOZAMMEL.M.; PRITHBEY, R.D.; MOHAMMAD, S.H., et al. Taguchi S/N based optimization of machining parameters for surface roughness tool wear and material removal rate im hard turning under MQL cutting conditions. Measurement, v. 122, p. 380-391, 2018.

NASCIMENTO, C.F.; DE OLIVEIRA, C.H.; VIEIRA F.F.S.; FREDERICO, P. et al. Analise da rugosidade Ra no torneamento do aço inoxidável super duplex UNS S32750 utilizando planejamento de experimentos. In: Proceedings ABCM 10º Congresso Brasileiro de Engenharia de Fabricação -COBEF, São Carlos, Brasil, May 2019.

PERUMAL, A.; KAILASANATHAN, T.; BALASUBRAMANIAM, S. et al. Multiresponse optimization of wire electrical discharge machining parameters for Ti-6Al-2Sn-4Zr-2Mb (α-β) alloy using Taguchi- grey relational approach. Advances in Materials Science and Engineering, v. 2022, online, 2022.

RIBEIRO, L.; DA CUNHA, W.; DE OLIVEIRA NETO, P. et al. Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons. New Journal of Chemistry, v. 37, n. 9, p. 2829 – 2836, 2013.

ROSA, A.F.P.; HAMMES, J.M.; ROYER, R. Otimização da rugosidade superficial dos aços SAE 1020 e 1045 em processo de torneamento usando projeto de experimentos. Brazilian Journal of Development, v.6, n.10, p. 79069-79087, 2020.

SANTOS JUNIOR, M.C.; ARAÚJO FILHO, J.S.; BARROZO, M.A.S. et al. Development and application of a temperature measurement device using the tool workpiece thermocouple in turning at high cutting speeds. Journal of Advanced Manufacturing and Technology, v.89, p. 2287-2298, 2017.

SILVA, B.M.; WALLBANK, J. Cutting temperature: prediction and measurement methods: a review. Journal of Materials Processing Technology, v.88, p. 105-202, 1999.

SILVEIRA, M.L.; REZENDE, B.A., FARIA, P.E. Planejamento de experimentos e usinagem de um material sanduiche. In: Proceedings 4º Seminário de Estudantes de Pós-graduação do IFMG, Bambuí, Brasil, 2018.

SUTTER, G.; RANC, N. Temperature fields in a chip during high-speed orthogonal cutting- a experimental investigation. International of Machine Tools and Manufacturing, v.47, n.10, p. 1507-1517, 2007.

TAYLOR, F.W. On the art of cutting metals. Transactions of ASME, v.28, p. 31-248, 1907.

VARGHESE, V.; RAMESH, M.R.; CHAKRADHAR, D. Experimental investigation and optimization of machining parameters for sustainable machining. Materials and Manufacturing Processes, v. 33, n. 2, p. 1782-1792, May, 2018.

WALPOLE, R.E.; MEYERS, R.H.; MEYERS, S.L.; et al. Probability and statistics for engineers and scientists, 9 ed., Boston, Pearson Education, 2011.

WANG, X; FENG, C.X. Development of empirical models for surface roughness prediction in finish turning. The International Journal of Advanced Manufacturing and Technology, v.20, n.5, p. 348-356, 2002.

ZHAO, J. et al. Tool coating effects on cutting temperature during metal cutting processes: comprehensive review and future research directions. Mechanical Systems and Signal Processing. Vol. 150, march, 2021.

ZHOU, F. A new analytical tool-chip friction model in dry cutting. International Journal of Advanced Manufacturing Technology, v. 70, n.1-4, p. 309-319, 2013.

Published

2022-06-30

How to Cite

David, J. P. C., Pagotto, C. R., & Marcomini, R. F. (2022). Usando o planejamento de experimentos para a predição da temperatura de usinagem através da técnica do termopar acoplado à ferramenta de corte / Using design of experiments for machining temperature prediction by thermocouple inserted in the cutting tool technique. Brazilian Journal of Development, 8(6), 48587–48608. https://doi.org/10.34117/bjdv8n6-390

Issue

Section

Original Papers